RL-TR-97-231
Final Technical Report
February 1998

AUTOMATING OBJECT-ORIENTED SOFTWARE
DEVELOPMENT FOR PARALLEL PROCESSING
SYSTEMS

Arizona State University

Stephen S. Yau, Changju Gao, Debin Jia, Jun Wang, Jiazheng Wu, and
Bing Xia

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19990414 Bo1

| DPTIC QUALITY INTErECTED 8

AIR FORCE RESEARCH LABORATORY
ROME RESEARCH SITE
ROME, NEW YORK *

Although this report references a limited document (*) listed on page 104, no
limited information has been extracted.

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

RL-TR-97-231 has been reviewed and is approved for publication.

/ s
A ij fU) v fete
i // /

JOSEPH CAVANO
Project Engineer

APPROVED:

iy — 7
% e 7 "
FOR THE DIRECTOR:

WARREN H. DEBANY JR., Technical Advisor
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory mailing list, or if the addressee is no longer employed by your organization,
please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505. This will assist us

in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

ALTHOUGH THIS REPORT IS BEING PUBLISHED BY AFRL, THE RESEARCH WAS
ACCOMPLISHED BY THE FORMER ROME LABORATORY AND, AS SUCH, APPROVAL
SIGNATURES/TITLES REFLECT APPROPRIATE AUTHORITY FOR PUBLICATION AT

THAT TIME.

Form Approved

REPORT DOCUMENTATION PAGE OB No. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reparts, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Gffice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DG 20503.

1. AGENCY USE ONLY (Leave blank/ 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1998 Final Jul 95 - Dec 96
5. FUNDING NUMBERS
F30602-95-C-0202

4. TITLE AND SUBTITLE
AUTOMATING OBJECT-ORIENTED SOFTWARE DEVELOPMENT FOR Cc -

PARALLEL PROCESSING SYSTEMS PE - 62702F
PR - 5581

6. AUTHOR(S) TA - 20

Stephen S. Yau, Changju Gao, Debin Jia, Jun Wang, Jiazheng Wu, WU - PL

and Bing Xia

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Arizona State University REPORT NUMBER
Computer Science and Engineering N/A
P.O. Box 875406
Tempe AZ 85287-5406
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
Air Force Research Laboratory/IFTB

RL-TR-97-231

525 Brooks Road
Rome NY 13441-4505

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Joseph P. Cavano/IFTB/(315) 330-4033

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
A set of computer-aided software engineering (CASE) tools for the software development framework for parallel

processing systems based on the PaRallel Object-Oriented Functional computation model (PROOF) toward the
automation of object-oriented software development for parallel processing systems is presented. An object-oriented
analysis tool has been developed to identify and express parallelism in the problem statement. We have developed a
communication estimation tool to estimate the communication among objects, and a clustering tool to partition the
objects in groups so that the intergroup communication is reduced and concurrency with specified user requirements
is realized. The parallelism analysis tool further explores potential parallelism by analyzing the invocation relations
and data flow among objects. The PROOF/L back-end translator is extended to support clustering and dynamic
allocation features in order to achieve better performance on a workstation cluster. The software effort using our
approach can be greatly reduced due to implicit synchronization and communication, the user-friendly graphical
interfaces of the CASE tools, the automated object-oriented analysis and parallelism analysis. The performance of
software developed using our approach can be improved due to the integration of the object clustering algorithm, the
parallelism analysis tool and the extended back-end translator.

15. NUMBER OF PAGES
122

14. SUBJECT TERMS
Parallel Processing Systems, Object-Oriented Software Development Framework, CASE

Tools, PROOF, PROOF/L, Object-Oriented Analysis, Clustering Algorithm, Back-End |16. PRICE CODE

Translator, Parallelism Analysis, Large-Scale Parallel Software Development

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

|\DTIC QUALITY LicZEUGIED 3

Standard Form 298 gRev. 2-89} (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/CIOR, Oct 94

Contents

1 Introduction 1
2 Our Approach to Software Development for Parallel Processing Sys-

tems 4

2.1 Overview of Qur Approach« oo 4

2.2 Object-Oriented Analysis v 5

2.3 Object Design o o i 8

2.4 Partitioningo 9

9.5 Transformation . . « . v o v v v v e e e e e e 10

2.6 ALOCALION . v v o v e e e e e e e e e e e e e e e e 11

3 Object-oriented Analysis Tool 12

3.1 IntrodUuCtiOon . . . v v v v v e e e e e e e e e 12

3.2 OurApproach 12

3.2.1 Semanticanalysis 13

3.2.2 Layout support o .o oo 14

3.2.3 Analysis verification 17

3.2.4 Common drawing technique 19

3.3 Semantic Analysis Toolo 20

3.4 User Interface Specification Language 23

4 Communication Estimation Tool and Object Clustering 25

4.1.1 Communication Estimation Algorithm 26

4.1.2 Communication Estimation Tool 29

4.2 Object Clustering 35
4.2.1 Clustering Model 35

4.2.2 Our Clustering Algorithm 38

423 Experiments. 40

5 Parallelism Analysis 44
5.1 Our Parallelism Analysis Approach 44
5.2 Implementation., 48
53 AnExample 51

6 Back-end Translator on A Workstation Cluster 57
6.1 Target Languages e e o7
6.2 Object Cluster Allocation 59
6.3 Target Languages Code Generation 60
631 ParselF1Code 60

6.3.2 Structural Linking 62

6.3.3 Unique Data Structures e 63

6.3.4 Clustering and Dynamic Allocation Support 65

6.3.5 Output File Organization 67

6.3.6 Distributed Method Invoke and Building Parallel Functions. . . 68

7 Examples 72
7.1 The ATM System Example 72
7.1.1 Specifications of A Hypothetical ATM System 72

7.1.2 Object-Oriented Analysis v v 73

7.1.3 Object Clustering 81

ii

7.1.4 Public Key Algorithm . © 82
7.1.5 Dynamic Behavior Analysis 84
7.9 The Air Force Defense System Example. 84
7.2.1 Specifications of a Hypothetical Air Force Base Defense System 86

7.2.2 Object-Oriented Analysis. B 87
7.2.3 Object Design 91
8 Discussion 96
Appendix 100

A The User Interface Description Language Used in our Object-Oriented

Analysis Tool ' 100
A.1 The Syntactic Definitiono 100
A.2 The Semantic Description oo 102

104

Bibliography

iii

List of Figures

2.1 Our PROOF software development framework for parallel processing
SYSTEMS. e e e e e 6

3.1 Our approach to development flows in OOA for application software

development. 13

3.2 Ourapproach. e 14

- 3.3 Our process for semantic analysis. 15
3.4 Layoutstandards.o e 16
3.5 OOA verification. e 18
‘3.6 An example of the information tree. 18
3.7 The frame for the semantic analysistool. 23
4.1 An example for illustrating our communication estimation algorithm. . 28
4.2 Classes and the relations among of the example. 29
4.3 The window structure for our communication estimation tool. 31

4.4 A section of the graphical expression of objects (12, 16, and 25) and
their relations. 32

4.5 An example of the interface for modifying the object “Control Center”

(25). . . e 33
4.6 An example of the initial state (input) of our communication estimation

toOl. . . e 34
4.7 An example of the result of our communication estimation tool. 34

4.8 (a) The original DAG, (b) clustering without duplication, and (c) clus-
tering with duplication.o L oL 36

iv

4.9

4.10
411
4.12

4.13
4.14

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1‘
6.2
6.3
6.4

7.1
7.2

7.3
7.4

7.5
7.6
7.7

(a) Clusters of a DAG and (b) Gantt chart of the clusters in (a)..... 37
The original DAG of an example. 40
At time 12, Oy finishes. 41
At time 16, O, is assigned to processor 1 and Oy is assigned to processor

TR U 41
At time 45, Oy is assigned to processor 4. 42
The Clustering result of the example. 43
The dynamic states and critical actions of an object 45
Invocation and object state of object Oy 46
The state transition diagram of object O. 49
Two state transition cases for object O. 50
An scenario for the elevator system. 54
The state transition diagram for CONTROLLER of the elevator system. 55

The transition trace for a scenario of the elevator system. 56
The translation steps from IF1 to a target code. 61
The data format of the translated target Ccode 63
The activity of the starting object 66
The underlying PROOF/L communication scheme 69
An ATM SyStem. o v v v v e e e 73
The object analysis result of the ATM system example using our OOA

B00L. e e e e e e e e e e 74
The interface for designing a class using the OOA tool. 7
The object communication diagram for the set of decomposed objects

of the ATM system example.« . oo 80
The transaction diagram for a transfer between two banks. 81
The object structure before clustering. 82
The event trace diagram for the transfer scenario of the ATM system

EXATPLE. . o o e e e e 85

7.8 The object communication diagram for the set of decomposed objects
of the hypothetical air force base defense example... 89

8.1 Speedup using various numbers of workstations to simulate ATM sys-
tem in PROOF/L. 99

vi

List of Tables

4.1

71

7.2

8.1

8.2

8.3

8.4

The scheduling result in Gantt chart.

Object classification of the ATM system example.

Object classification of the hypothetical air force base defense example.

The average time of one transaction from 100 transactions loop (in
seconds) in the ATM system example programmed in PROOF/L and
translated to PVM/Sun C using different numbers of workstations.

The execution time of the hypothetical air force base defense example
programmed directly in nCube C using different numbers of nodes.

The execution time of the hypothetical air force base defense exam-
ple programmed in PROOF/L and then translated to nCube C using

different numbers of nodes.o

The execution time of 100 iteration of the hypothetical air force base
defense example programmed in PROOF/L and then translated to

PVM/Sun C using different numbers of nodes (Sun workstations). . . .

vii

42

79
89

. 98

. 98

98

98

Chapter 1

Introduction

Although parallel processing is becoming popular in scientific computation, decision-
support and financial analysis activities, sequential computers still remain dominant
in practice. Although it is cost effective to use sequential computers for those appli-
cations which are inherently of sequential nature, there are many applications whose
structures are inherently parallel and which require a large amount of computing
power to complete the necessary computation in a short time interval, such as com-
mand, control, communication and intelligence (C3I), telecommunication, simulation,
space science, and weather forecasting. To effectively utilize various parallel process-
ing systems, we need to have a software development methodology in which the design
specification is architecture independent and the architecture dependent issues, such
as partitioning (clustering), grain size determination and allocation, can be either au-
tomatically taken care of in the compilation (or translation) or addressed at a later
stage of software development so that the design specification is more re-usable and
the developed software is more portable.

One promising approach to identify and express parallelism in software development
for parallel processing systems is the object-oriented paradigm which naturally reveals
existing parallelism in the problem space. In addition to modifiability, maintainability
and reusability, this paradigm is better than others in that the concept of an object
can be used at earlier stages of software development cycle than the implementation
stage. It implies that parallel processing aspects, such as parallelism and communi-
cation among parallel components, can be naturally handled at an earlier stage of
software development. Consequently, it is easy for the programmer to handle paral-
lelism and communication among parallel components. The functional paradigm is
based on the concept of functions. This paradigm offers great potential for exploiting
parallelism by removing side effects caused by assignment statements. The simplicity
and effectiveness of the functional programming style and the mathematical basis of
functional programming languages are demonstrated by functional programming lan-
guages, such as FP [1], SML [2] and SISAL [3]. We have developed the computation
model PROOF (PaRallel Object-Oriented Functional) [4] in which the object-oriented
paradigm is integrated with the functional paradigm to take advantage of many useful
features of both paradigms. We also developed a software development framework for

parallel processing systems based on the computation model PROOF [5, 6, 7, 8], and
developed a front-end translator to translate PROOF/L code to IF1, and back-end
translators to translate IF1 code to nCube C and KSR C (8].

In order to exploit parallelism at the lower level, we have to consider the trade-off be-
tween the communication overhead and parallel execution. The communication over-
head due to excessive parallelism may degrade the performance significantly. Thus,
we need to find proper size of partitions or grains so that the completion time of the
program execution can be minimized. The existing back-end translators do not incor-
porate any object partitioning algorithm. In order to make our software development
approach for parallel processing system to yield software with better performance, we
need to incorporate the result from an object clustering algorithm in the back-end
translation so that parallelism among objects can be effectively exploited.

In this project, we have conducted the following tasks:

1. Investigation on object identification methods.

We have investigated Booch’s [9], Shlaer & Mellor’s [10], Coad and Yourdon’s
[11], and Rumbaugh’s [12] approaches in their applicability to the object-oriented
software development for parallel processing systems, identify the advantages and
disadvantages of these methods, and develop a set of guidelines on how to use
these approaches for software development for parallel processing systems in con-
junction with our software development approach. However, the methods used
in those approaches to identify objects are similar. Our method for identifying
objects is the combination of Booch’s and Rumbaugh’s approaches [13].

2. Development of CASE tools.

e We have identified the requirements for developing an integrated CASE tool
set for supporting the object-oriented analysis phase of our software devel-
opment approach.

o We have developed a graphical user interface to help the user specify the
relation among objects graphically. This graphical user interface has the
features of object creation, object annotation, object specification, object
deletion, object copying, and others. It also supports the hierarchical rep-
resentation of objects so that it can be used for large-scale object-oriented
software development for parallel processing systems. This graphical user
interface is based on X-window running on Sun workstations [14]. All the
basic functions of the graphical user interface are implemented and tested.
The source code for this interface is written in C.- ‘

o We have developed a communication estimation tool and object clustering
tool with graphical user interface. The tool creates the graphical represen-
tation for the object hierarchy, allows user to specify communication costs,
estimates the unspecified communication costs and clusters the objects into
groups using our object clustering algorithm. This tool is based on X-window
running on Sun workstations. All the basic functions of this tool are imple-
mented and tested. The source code for this tool is written in C.

e We have developed a CASE tool to help the user identify and express par-
allelism in the problem statements, and evaluate parallelism to determine
the benefits of using parallel processing systems. This CASE tool shares
the information with the graphical user interface, and helps the developer
identify the types of objects, and analyze the parallelism among objects by
producing a list of each type of objects. All the basic functions of this tool
are implemented and tested. The source code for this tool is written in C.
This tool doesn’t require X-window system.

3. Incorporation of the result of our object-partitioning algorithm to the back-end
translator. We have implemented the object-partitioning algorithm and incorpo-
rated the results to the back-end translator in order to exploit parallelism among
objects. By doing so, we are able to utilize the parallel processing systems more
effectively and reduce the development effort.

4. Demonstration of the guidelines for identifying the objects in the problem state-
ments, the CASE tools and our software development approach.

We have demonstrated the guidelines for identifying the objects in the problem
statements for software development for parallel processing systems with some
examples. We have demonstrated the CASE tools on a cluster of Sun worksta-
tions by developing some applications. We have also demonstrated the speedup
of our approach, especially the effectiveness of the object-partitioning algorithm

 and the back-end translator by developing and running some application software
on a workstation cluster.

Chapter 2

Our Approach to Software
Development for Parallel
Processing Systems

2.1 Overview of Our Approach

Our approach to software development for parallel processing systems is based on
the computation model PROOF which incorporates the functional paradigm into the
object-oriented paradigm [7]. Our framework [6], as shown in Figure 2.1, consists of
the following phases: object-oriented analysis, object design, partitioning, PROOF/L
coding, front-end translation from PROOF/L to IF1, grain size analysis, back-end
translation from IF1 to a target language of a parallel processing system, and alloca-

tiom.

In this project, we have developed CASE tools to support object-oriented analysis,
object-oriented design, and object clustering. We have developed a back-end trans-
lator which translates IF1 to C on a workstation cluster. We have also designed and
implemented algorithms for analysis of parallelism among objects and allocation of
objects. The object clustering tool uses the output from the object-oriented analysis
tool and provides graphical output which will help the users develop parallel applica-
tions. The tools have been tested using various examples. We will present the tools
with examples in the next several chapters.

In object-oriented analysis, the requirements are decomposed into a set of interact-
ing objects. We have developed a semantic analysis tool to support object-oriented
analysis. The concurrent/parallel aspects of the system behavior are first visualized
using the object-communication diagrams, and then analyzed and specified using the
graphical user interface. The objects identified in the object-oriented analysis phase
are then designed and verified in the object design phase. In the partitioning phase,
the objects in the software system are partitioned into a set of clusters to improve
the overall performance of the software system by minimizing communication cost

and exploiting parallelism among objects. The front-end translation, grain size de-
termination and back-end translation are grouped together by a dotted rectangle
in Figure 2.1, called transformation, where the architecture-independent PROOF/L
code is transformed into a target code to be allocated into the parallel machine. The
architecture dependent issues need not to be considered until after the front-end trans-
lation. In the grain-size analysis phase, the proper sizes of tasks are determined using
the architecture-dependent information, such as communication cost and execution
time in the target parallel machine. In this transformation, the partitioning and grain
size analysis results are incorporated to generate the target code which can be effi-
ciently executed on the target parallel machine. After the target code is generated,
it is allocated to a set of processors. We have developed CASE tools to facilitate
object-oriented analysis and design for parallel processing systems. In the following
sections, each phase in our approach is summmarized [8]. The object-oriented analysis
and design phases are partially automated using our CASE tools.

2.2 Object-Oriented Analysis

Our object-oriented analysis is different from other object-oriented analyses, such as
Rumbaugh’s OMT(Object Modeling Technique) [12] and Coad & Yourdon’s Object-
Oriented Analysis [11], in that our approach focuses on the concurrent /parallel aspects
of the system, but other approaches do not address concurrency explicitly. Our ap-
proach starts from the given requirement statements. The requirement statements
often contain ambiguities. When ambiguities are found during the object-oriented
analysis, we report them to the user or domain expert to clarify the requirement
statements. Thus, our object-oriented analysis is an iterative process which contin-
ues until all the functionalities are satisfactorily specified. When the requirement
statements are not complete, we may use the guidelines given in [15] to clarify them
although more research in this area is needed.

The object-oriented analysis phase consists of the following steps [5, 6, 7}:

1) Identify objects and classes.

2) Determine class interfaces.

3) Specify dependency and communication relationships among objects.
4) Identify active, passive and pseudo-active objects.

5) Identify the shared objects.

6) Specify the behavijé)r of each of the objects.

7) Identify bottleneck objects, if any.

8) Check the completeness and consistency.

Requirement

Specification
J, GUI support developed
4 - - in the project.
! Object-oriented Function extended in
S~ - Analysis the project.
Y F
\
~~- Object Design
v !
4 w l
N I
‘«__] Coding in PROOF/L Partitioning !
|
1
P e '
!]
| Architecture
I Independent
|
| :
A Y] R Rt I x
1 L]
|]
! Architecture
! Dependent
1
} |
| t
1 I
1 |
i 1
1 i
1 I
t 1
, Transformation

Executable Code
(Target Language)

Figure 2.1: Our PROOF software development framework for parallel processing systems.

In Step 1), the software system is represented by a set of communicating objects.
Objects are identified by analyzing the semantic contents of the requirement specifi-
cations. All physical and logical entities are recognized. Each object corresponds to
a real-world entity, such as sensors, control devices, data and actions.

In Step 2), object class interfaces are determined. In PROOF, every object is consid-
ered as an instance of an object class. Instead of defining objects directly, the object
classes to which they belong must be defined. Class interfaces may consist of both lo-
cal methods and global methods. The local methods are class specific methods; while
global methods can be accessible to any other global methods, any method of other
classes, or body of any object instance. The purpose of global methods is to provide a
flexible way to address general operations which do not belong to any specific classes.

In Step 3), the static relationship among objects are specified using the object com-
munication diagrams, in which the objects are represented as rectangles, the links
between the objects (which can be specified as method invocations) indicate the com-
munication between objects, and the arrows on the links indicate the directions of

communications.

In Step 4), the objects are classified according to their invocation properties as active,
passive or pseudo-active. An active object can initiate activation of other objects by
invoking methods of other objects. The methods defined in an active object cannot be
invoked by other objects, but they can be invoked by other methods defined within the
active object itself. A passive object is activated only when its methods are invoked
by other objects. Pseudo-active objects can invoke the methods of other passive or
pseudo-active objects and also has methods which can be invoked by other active or
pseudo-active objects. All the threads of control in the application start from the
active objects. We can identify all the possible threads of control and then use this
information to check for the completeness and the consistency of the analysis.

In Step 5), once the static structure of the software system is determined, we identify
shared objects from them. A shared object has local data which can be accessed by
a number of objects. The shared objects can be further divided into read-only shared
objects and writable shared objects. The read-only object has local data which cannot
be modified by other objects. The writable object has local data which can be modified
by other objects. Read-only objects can be freely duplicated as many times as desired.
All the access to the data in the writable shared objects needs to be synchronized to
maintain the consistent status of the data.

In Step 6), the behavior of each object is specified using the following notations:

— SEQ(m4,ma, . .., mys): The methods my,m,...,mn, are executed sequentially.

- CON(my,ma,...,my,): The methods mi,ms,...,mn are executed concurrently.

~ WAIT(m, O): Object is waiting for the invocation of its method m by another
object O to proceed with its execution.

— SEL(m1,ma, ..., mn,): The object selects one of the methods for execution from
among the methods my,ms,...,mx. '

— ONE — OF(W AIT(m1,0;),...,WAIT(m,, Ox)): The object permits only one of
its methods m., ..., mn, to be invoked by other objects. ONE-OF construct is used

in cases where other objects could try to invoke the methods defined in the object O
simultaneously, while the object O permits only one object to invoke its method at a

time.

In Step 7), bottleneck objects which may unnecessarily degrade the performance of
the software system are identified. Usually, a bottleneck object be a shared writable
object. One can identify a shared writable object from the description of the object
behavior in Step 6). If such an object is found, then redo or refine the analysis to

reduce the bottleneck if possible.

In Step 8), the result of the analysis is verified with the user requirements. From the
given user requirements, the possible threads of controls are identified, and each of
them 1s examined using the behavior of the objects specified in Step 5).

For more detailed information on the object-oriented analysis in our approach, refer
to [7].

2.3 Object Design

Objects obtained from the analysis phase have to be designed. In our approach,
the object design is specified using the notation defined in PROOF/L [4]. The class
interface definitions and information about the object behavior are used to design the
objects. Our approach to object design involves the following four steps:

1) Establish the class hierarchy.

2) Design the class composition and the methods in each object.
3) Design the bodies of the active and pseudo-active objects.
4) Verify the object design.

In Step 1), since some common operations and/or attributes between the objects may

not be apparent in the analysis phase, different objects are reexamined to identify
the commonality between the classes in the design phase. A set of operations and/or
attributes that are common to more than one class can then be abstracted and imple-
mented in a common class called the superclass. The subclasses then have only the

specialized features.

In Step 2), the composition and the methods for each object class are designed. The
class definition consists of composition and methods. The composition defines the
internal data structure of the class. Various constructors, such as list and Cartesian
product, are provided. A typical functional style is adopted in the method definition.
A rich set of functional forms, i.e. high-order functions, as well as primitive functions
are predefined. In the method design, the internal state of the object to which the
method belongs is included as both the input and output parameters so that side-
effects are avoided. A method of an object consists of an optional guard and an

ezpression. The guard is a predicate specifying synchronization constraints and the
expression statement specifies the behavior of the method. The object which invokes
the method is suspended when the value of the attached guard is False, and it is
resumed when the guard becomes True. The guard attached to a method is defined
in a way that it only depends on the status of the local data, and does not depend on
the definition of any other methods. The global methods which are class-wide methods
should also be specified here for determining the properties of the operations.

In Step 3), a body is associated with each active and pseudo-active object. There is no
body associated with a passive object as it does not invoke any methods. The role of a
body is to invoke a method and to modify the state of the objects represented by their
local data. The body in each object is expressed in the form e1//es// ... [/ex where
each e; is an expression representing method invocations and expressions separated
by // are evaluated simultaneously. // is a parallel construct indicating parallel
execution. The modification of an object is expressed by the reception construct
which has the form R[|o|]e, where o, called a recipient object, is an object name and e
is an expression with applications of purely applicative functions only. The reception
construct can occur only in the bodies of active and pseudo-active objects. The
reception construct indicates that the object o receive the value returned as a result
of evaluating the expression e. This construct modifies the states of the object.

In Step 4), the design of the objects done in the previous phase has to be verified and
analyzed. For this purpose, we transform our design into Petri nets [16], which have
been selected in our approach mainly because our design can be easily represented in
a Petri net model and because many techniques have been developed to analyze Petri-
net models. The transformation of our design to Petri nets consists of the following
three steps: 1) transformation of bodies to Petri nets, 2) composition of the nets, and
3) refinement of the nets. ‘

For more detailed information on the object-oriented design steps in our approach,
refer to [7].

2.4 Partitioning

In the partitioning step, the objects in the software systems are partitioned into a set
of clusters in order to reduce communication cost among processors while maintain-
ing the parallelism among the objects. It is very difficult to achieve linear speedup
due to communication costs among processors, contention of shared resources and
inability to keep all the processors busy [17]. That is one of the reasons that there
is a large gap between the ideal peak performance and the real performance in most
parallel computers. The partitioning approaches for reducing communication cost are
divided into three categories: graph-theoretic [18, 19], integer programming (20, 21]
and heuristics [22]-[23]. One of the common assumptions in these approaches is that
the execution time for each module and the communication time among modules are
given as input. Our partitioning approach does not assume that exact execution time

and communication time are available. In addition, most of the existing partitioning
approaches cannot be used when the software is decomposed as a set of such objects

having shared data.

The objective of our partitioning approach is to improve the overall performance
of the software by reducing communication cost among processors and increasing -
parallelism among objects. The input to our approach are (1) the structure of the
objects in the software system, expressed using the user interface description language
(Syntax and semantic definitions are in Appendix A), (2) communication information
specified by the user or estimated using the communication estimation tool, and (3)
the number of replications for each object as required for fault tolerance. Using this
information, we represent the software system as an directed weighted graph in which
every node represents a cluster of objects and every edge between two nodes has a
weight representing the degree of contribution for improving the overall performance
of the software system by parallel execution of the two clusters. The details of our
clustering approach with illustrative examples has been presented in chapter 4.

2.5 Transformation

The transformation of the PROOF/L code to a target code involves the follow-
ing steps: partitioning, front-end translation, grain-size determination and back-end

translation.

The PROOF/L code is first translated into an IF1 code and then the IF1 code is
translated to the target code. The former is called froni-end translation which is a
semantics-oriented translation, and machine or architecture dependent issues are not
involved. The latter is called back-end translation.

In the grain size analysis step, we focus on finding proper grain sizes within each
object. Thus, we can consider each object as an independent program. We represent
the program as a directed graph in which each node corresponds to an IF1 construct,
and each edge represents a data dependency relation. In order to perform grain size
analysis, the execution time of the IF1 constructs is estimated statically, and the
communication time between them are estimated by examining the type information
of the data transmitted. The estimation can be done statically by analyzing the
assembly code for these constructs. We developed efficient heuristic algorithms of
three different types of parallelism — tree parallelism, graph parallelism and pipe-lined
parallelism. The details of these algorithms can be found in [7].

The back-end translation is performance-oriented and machine or architecture de-
pendent. After partitioning and the result is incorporated to the intermediate form,
which is translated into corresponding equivalent target code In the previous project,
we have developed two back-end translators for two target parallel processing systems,
KSR and nCube. However, the translators have not included partitioning and grain
size determination. Hence, we have developed a new back-end translator for C for a
cluster of workstations. The translator has incorporated other new features like load

10

balancing, dynamic allocation.

2.6 Allocation

After the target code is generated, the target code is allocated to the parallel proces-
sors in such a way that the execution time of the target code can be minimized by
exploiting parallelism in the target code.

One of the problems that must be solved in order to achieve high performance of
software for parallel computers is the allocation of tasks among the processors. Some
of the factors that prevent the ideal linear speed-up in parallel processing are 1)
insufficient concurrency and 2) high communication overhead [25]. The task allocation
problem has been studied extensively [25]-[28]. In these approaches, efficient heuristic
task allocation algorithms were introduced. Factors to be considered in the allocation
phase include the number of processors, the number of processes to be allocated,
interprocessor communication pattern, and communication overhead.

11

Chapter 3

Object-oriented Analysis Tool

3.1 Introduction

In this chapter, we will present a framework for an integrate tool set to assist users in
object-oriented analysis for seqential as well as distributed parallel processing systems
[14]. This framework emphasizes on how to easily represent OOA results textually,
how to automate graphical layouts from textual representations, and how to keep
consistency between textual and graphical representations. We have also integrated
the verification of the OOA results [29] into the framework. This framework is demon-
strated by a CASE tool set which is being developed on SUN workstations under the

X window environment.

3.2 Owur Approach

Our approach to overcoming the deficiency of the current CASE tools for the OOA
[14] can be illustrated in Figure 3.1. The analysis tool served as the front end to
any drawing tool, can assist the users to simplify the OOA specification. Then,
the “automated layout support,” served as a back-end support for drawing tools,
can layout the corresponding graphical notations based on the OOA specification.
Changes can be made interactively between users and analysis tools or drawing tools

for the following purposes:

e add, delete, and update any object-oriented component.
e resolve any unreasonable placement of graphical notations.
Consistency needs to be implicitly maintained between analysis tools and drawing

tools, and verification can be realized by comparing the original problem statements
with the OOA specification. '

12

- -~

S e W N
Analyze iAnalysié Results i Automated
"1 Tools \ Layout |

<« ! 7 \ Support
S N S <" |Drawing Tools ‘-------- o
. 5 -___-- 7 e .- "/
Verfication Maintain consistency

Figure 3.1: Our approach to development fows in OOA for application software development.

Similar approaches for supporting automation in structured analysis and structured
design (SA/SD) have been developed (30, 31] with emphasis on automated generations
of data flow diagrams and entity relationship diagrams. Since the OOA provides better
modularity, abstraction, hierarchy, encapsulation than the SA/SD, our approach needs
to provide more automation supports to the OOA, which can assist the users to
analyze the problem statements more meaningfully.

Our approach to providing automation supports in the OOA starts from the problem
statements. It consists of the following phases: semantic analysis, layout support,
analysis verification, and common drawing technique. The approach is shown in

Figure 3.2.

3.2.1 Semantic analysis

Our approach starts from the problem statements given in a natural language. Prob-
lem statements are assumed to be complete in the functionalities of the problem
domains. The purpose of the semantic analysis is to assist users to concentrate on
problem statements to derive the corresponding topological specifications in object-
oriented components, including classes/objects, attributes, methods, aggregation hi-
erarchy, inheritance hierarchy, association, events, and states.

The current CASE tools allow the users to interactively draw the specifications in
terms of graphical notations to represent analysis results diagrammatically, which
can be time-consuming and difficult to layout, especially when the scale of applica-
tion software increases dramatically. Furthermore, modifications in the geometry of
graphical notations, either add, delete, or move, can create considerable ripple effects
in clarity for overall appearances of graphical notations, and cause great drawbacks
for the extensive usage of drawing capabilities of CASE tools.

In order to avoid unnecessary interactive drawing, textual specification is the sim-
plest, cleanest, and quickest way for representing the OOA results. Our approach
uses the initial user problem statements as a basis to start the analysis. User’s scan-
ning through the entire problem statements allows him /her to pinpoint and highlight
these appropriate object-oriented components in the textual format. Different changes

13

Semantic Analysis Analysis

Editor Verification
A .
nteractive Deficient
Capability Information
Graph :Consistenc
our Informatio V Checking /'
Features .-~ '~ 7
‘Layout " ayout . Layout
"-Cozstruints 7| Support [T - Algorithms -
Common
. Drawing Tools
Common Dynamic Static
Features Behavior Structure
1

Figure 3.2: Our approach.

in highlight colors/fonts can be used for different OO components for visual aids. Any
other OO components, which are not explicit in the problem statements, can be listed
as the problem domain information which has some relations with other OO compo-
nents. Under the semantic analysis, users can follow other popular OOA approaches,
such as Rumbaugh’s OMT approach [12], Coad & Yourdon’s approach [11]. The pro-
cess for the semantic analysis is shown in Figure 3.3. Close investigation of problem
statements with user’s participation is essential. The semantic analysis assists users
to concentrate on problem statements in the textual format. The semantic analysis,
which serves as an analysis between users and common drawing tools shown in Fig-
ure 3.1, outputs analysis results in an interface language hidden from users. Then,
analysis results are passed to the following two steps: automation of analysis diagram
generation and verification of analysis results.

3.2.2 Layout support

Automation in layouts determines the geometry for graphical notations organized
through topological information from the semantic analysis. Either class/object di-
agrams or event trace diagrams can be expressed in term of a graph G = (V, E),
where V is the set of vertices which represents graphical notations, F is the set of
edges which connects several vertices, and G denotes the entire graph information.
Two standards for drawing [31] are shown in Figure 3.4.

e The straight line standard, where all connection lines are straight, and there are
no explicit bends.

14

Develop the software to support a computerized banking
system with automatic teller machines (ATMs) to be shared
by a consortium of banks.
°) °
An ATM will have the following capabilities:
* accepts a bank card,

Assumptions:
* ATM: rural, mclintok.
° °)
Pinpoint
Highlight

Develop the software to support a computerized banking
:r machines (ATMs) to/beshared
by a consortlum of banks. Each bank has its own computer

° °)
An ATM will have the following capabilities:

accepts a bank card,
o ° °

Assumptions:

* ATM 5541, mclintok.
e o o

method NN Object

Class

Figure 3.3: Our process for semantic analysis.

15

Straight Line

Figure 3.4: Layout standards.

o The grid standard, where all connection lines run along rectangular grids in one
of two orthogonal coordinates, while nodes can be embedded in one or more

grids.

Certain diagrams are viewed more naturally in one standard than in the other. As
shown in Figure 3.4, Booch notation [9] appears more acceptable in straight line
connections in class/object diagrams, while grid standard is more preferred in OMT

object models [12].

Different from automating layouts for integrated circuit (IC) design, whose purposes
are to minimize circuit areas, cross counts and total wire length, common aesthetic

criterion for analysis diagrams is to keep clarity (e.g., readability) of graphical repre-
sentations for the QOA, which can be determined by:

e Number of crossings between connections,
o Number of bends (wandering corners) in connection lines,
e Length of a connection line,

e Space between graphical notations,

e Distance for placement of labels on connection lines.

Priority markers need to be assigned as determined factors to resolve possible conflicts
in deciding partial layouts of diagrams.

Automated layout algorithms have been used extensively to handle the early SA/SD
diagrams: In [31], data flow diagrams (DFDs) and entity relationship diagrams (ERDs)
can have automated layouts in grids through three phases: planarization, normaliza-
tion, and compaction; In [30], DFDs can have automated layouts in grids through
placement of nodes for graphical notations followed by routing paths between these
nodes. In [32], directed acyclic graphs (DAGs) can have automated layouts in straight
lines through four phases: assign optimal rank for nodes, order nodes from left to right,
assign absolute coordinates for nodes, and route edges between nodes. The layout-
automation algorithms in the existing approaches incorporate constraints based on

16

characteristics of SA/SD diagrams or DAGs. The algorithms that we use to auto-
mate the layout for diagrams for the results from the OOA are extensions of these
algorithms. Since class/object diagrams are considered extensions of DFDs and ERDs,
there are more graphical notations for different types of nodes or edges in class/object
diagrams (e.g., Booch or OMT notations), which create more layout constraints. We
consider layout algorithms and layout constraints orthogonal to each other and they
are separated as shown in Figure 3.2. The layout support bases on layout algorithms,
while layout constraints for object-oriented graphical notations are declaratively en-
forced internally to the layout support. Since we already derived transformation rules
from event trace diagrams to the state transition diagram for each class [33], we can
easily obtain state transition diagrams as a part of final results.

Because the OOA is represented both textually and graphically, and textual repre-
sentation is the starting point to obtain the corresponding graphical representation,
consistency checking between these two representations must be maintained at all the
time. Any change made in one representation invokes the proper change in the other.
Besides automation in layout, interactive capabilities are also provided to users since
layout algorithms have not been able to handle all the cases, and deficient informa-
tion can potentially be fed back to users to decide replacement for any incomplete or
unreasonable layout results.

In general, the layout support incorporates both automatic and interactive capabili-
ties. ‘

3.2.3 Analysis verification

We have developed a formal approach to verify the OOA [29]. Some modifications
have been made to incorporate the OOA verification into our framework as shown in

Figure 3.5.
The OOA can be verified in three steps:

¢ Transform the OOA into the formal object algebra specification.

e Build graphical representations of inheritance tree, information tree, and transi-
tion trace table based on the object algebra specification.

e Check completeness and consistency between the OOA in graphical representa-
tions and user problem statements.

Specification in the interface language from the semantic analysis is converted to the
specification in object algebra. '

The inheritance tree represents all the inheritance hierarchy from object algebra speci-
fication. The superclass/subclass relationship can be single or multiple. The informa-
tion tree contains all the classes with attributes and methods rooted ffom a common

17

Check Com_pleteness

Stﬂ ;g::f:::s " "and Conmsfeﬁéy" -

| Inheritance Tree
Semantic ﬁ Information Tree
Analysis Transition Trace Table

A
Build Graphic‘al Representations

: 1
Diagrams || __ _P_ro_dyge_QbJe_cg ~ Formal Requiremen
Generation Algebra Specmcatlon Specification

Figure 3.5: OOA verification.

superclass “Software System”. Associations and aggregations among classes are also
specified in the information tree, as shown in Figure 3.6.

The transition trace table contains transition traces which are ordered lists of tran-
sitions between different objects. The table shows each object as a vertical line and
transition as a horizontal arc from a sender object to a receiver object. Time is or-
dered from top to bottom. Steps to determine transition traces in object algebra
are: identify relevant objects, identify initial transition, identify transitions between
objects, and identify terminal transition. As a result, a transition flow diagram is

generated.

Both the inheritance tree and information tree are used to verify static structures
of the OOA, and the dynamic behavior can be verified through the transition trace
table. In [29], systematic top-down and bottom-up approaches for completeness and
consistency checks between the OOA results and user problem statements can be
realized through comparisons. The difference between top-down and bottom-up is as

follows:

e top-down approach dissembles problem statements and matches their compo-
nents with graphical representations; ‘

e bottom-up approach reassembles sentences from graphical representa.tlons to
compare them with those in problem statements.

Both top-down and bottom-up approaches can be automated. Pattern matching can
be used in the top-down approach to match partials in problem statements with
graphical representations. Automatic reconstruction of sentences from' graphical rep-
resentations can be used to compare against problem statements.

18

constraint

Figure 3.6: An example of the information tree. .

I constramtl

ronstramj

3.2.4 Common drawing technique

Our drawing tools, like many existing OO tools, store the diagrams into the ASCII for-
mat with textual specifications of object-oriented components and their corresponding
geometric locations in the display can be used following the layout support. So the
‘outputs from the layout support can be converted to formats readable by CASE tools.
Then, diagrammatic information can be obtained for users to visually verify their un-
derstanding of problem statements with those graphical representations. Afterwards,
code generation capabilities in CASE tools for the later design and implementation
phases can be utilized to take advantages of the benefits offered by common CASE

tools.

In general, our framework can be considered as an individual framework external
to other application software development frameworks or as a part of comprehen-
sive application software development frameworks, such as PROOF model [6] and
object-oriented software development framework for Autonomous Decentralized Sys-
tems (ADSs) [33]. Combining our approach with existing CASE techniques, we will
be able to provide automation in analysis of problem statements and code generation
in both early and later phases of object-oriented software development.

3.3 Semantic Analysis Tool

Since the emphasis for the object-oriented analysis is to effectively identify objects,
the systematical way to identify objects is important for reducing the development
effort for any object-oriented software. Booch [9] has claimed that any ”meaningful”
noun is a candidate for an object. But many nouns can also be attributes of an object.
We believe that human cognitions for identifying unnecessary information for objects
are critical for reducing errors.

19

As we describe in the report of our previous project, our analysis phase focuses on the
concurrent or parallel aspect of the intended software based on problem statements,
. which is absent from many popular object-oriented approaches. Our object-oriented
analysis is an iterative process and continues until the functionalities behind the prob-
lem statements are understood and satisfactorily specified. Since many existing pop-
ular approaches provide systematic ways to effectively capture the static model and
dynamic model from the problem statements, and many of these approaches have
been shown that they can assist the user to systematically derive the object-oriented
analysis results, utilization of these approaches can be an effective starting point for
a users who are familiar with these approaches. Reuse of any of these approaches
can greatly serve the purpose of the object-oriented parallel and distributed software

development.

After the derivation of the “common” object-oriented analysis results, concurrent or
parallel aspect of the intended software needs to be considered and added to refine
the object-oriented analysis results. Our object-oriented analysis approach not only
utilizes existing results, but also provides necessary follow-on steps to assist users to
insert the relevant concurrent or parallel aspect. Our object-oriented analysis phase

consists of the following steps:

1. Based on the knowledge of any existing object-oriented analysis approaches, cre-
ate the initial “common” object-oriented analysis results.

2. After considering the dependency and communication relationships among classes
and objects, identify active, passive, and pseudo-active objects.

3. Identify the shared objects. A shared object has the local data which can be
accessed by a number of objects. The shared objects can be further divided into

two categories:

e read-only shared objects, which has the local data that cannot be modified
by other objects.

e writable shared objects, which has the local data that can be modified by
other objects.

Read-only objects can be replicated many times as desired. All the access to the
data in the writable shared objects can be replicated also as long as all these
objects can be synchronized to maintain the consistent status of the data.

4. Check the completeness and consistency. Results of the analysis need to be
verified with the user requirements. From the given requirements, the possible
threads of controls are identified, and each of them is examined using the behavior

of the object specified in b).

In the phase of the OOA, the purpose of the semantic analysis tool is to assist users
to identify the proper object-oriented components in the problem statements. The
basic frame for this CASE tool is designed with the detailed contents of the following

menu selections:

20

File Edit Insert Display Outputs

New Undo Class Classes FSL
Open Redo Object Objects Save
Save Rearrange Attribute Inheritances Edit
Save as Refresh Method Aggregations Class Diagram
Spawn Aggregation Associations Info Tree
Spawn 00Draw Association Events Event Trace
Exit Event States

Class

Object

State
Class
Object

The tool is a push-button-based viewer and provides strong interactive capabilities
to assist users to derive various object-oriented components with effective semantic
meanings, visual, and different menu selections. The functions of the semantic analysis
tools can be decomposed into four subcategories:

e Preprocess the graphical user interface specification of the problem statements
to recover the previous state when the tool operates on the problem statements.
Both formats in the plain ASCII and graphical user interface specification lan-
guage can be recognized and properly parsed.

e Specify the display to demonstrate the problem statements in the proper visual
aids, such as fonts and colors, to provide users with easy-to-capture semantic

meanings of the analysis.

¢ Define various event-driven-type callback routines to perform functions such as
adding, deleting, browsing, navigating, and updating the information of object-
oriented components (classes, objects, attributes, methods, class aggregation and
inheritance hierarchy, associations, events, and states), configuration changes
(fonts/colors), and other management issues, such as definitions of proper con-
stant values.

e Postprocess the tool to convert the display into the format of the graphical user
interface specifications for later retrieves or refinements.

The fundamental data structure are designed for supporting manipulation of the tool.
The data structure for the tool is coherently manipulated within various subcategories
of the implementation and was designed using the object-oriented approach (although
the code was written in C because of the interoperability across X/Motif toolkit and
Lex/Yacc parsing tools) and could uniquely handle various requirements from the
graphical user interface and the language processing. The union constructions with
different identifications, which denotes different object-oriented components, can be
considered as the basis for implementing the semantic analysis tool.

21

e Postprocess the tool to convert the display into the format of the graphical user
interface specifications for later retrieves or refinements.

The fundamental data structure are designed for supporting manipulation of the tool.
The data structure for the tool is coherently manipulated within various subcategories
of the implementation and was designed using the object-oriented approach (although
the code was written in C because of the interoperability across X/Motif toolkit and
Lex/Yacc parsing tools) and could uniquely handle various requirements from the
graphical user interface and the language processing. The union constructions with
different identifications, which denotes different object-oriented components, can be
considered as the basis for implementing the semantic analysis tool.

Besides the data for each entity specified in the semantic analysis tool, the global data
definitions for the semantic analysis tool is required to allow the tool to be able to
make references to any necessary information during the processing of the problem

statements.

e Dialog boxes for generating the entities based on the highlighted text within the
problem statements or the extra information (e.g., problem domains) provided

by users.

e Dialog boxes for displaying the list of different entities and the information de-
fined with each individual entsty.

e The list of different entities, such as list of classes, list of objects, list of associ-
ations, list of aggregations, list of inheritances, list of attributes, list of methods,

list of events, and list of states.

e The list of the entities provided from the problem statements and the list of the
entities provided based on user’s domain knowledge.

e The management data for determining whether the modified semantic analysis
results is saved, where the highlighted text is, whether the imported informa-
tion to the semantic analysis tool is the original problem statements or the last
analysis results, the current working directory and file.

e To support a multi-window working environment, several semantic analysis tools
can be invoked simultaneously from a single bench to process or view different
problem statements or analysis results. That a semantic analysis tool to remem-
ber its own identification is necessary.

Although the code of this tool is written in the C language, object-orientation between
data and their associated operations has been used during the entire implementation.
For different entities, different set of functions have been specified to process different
information within the entities, such as printing, associating the certain information
with other entities (e.g., association of objects, attributes, methods, and states to
classes). The assistance from Lex and Yacc tools under the Unix environment consid-
erably reduces the development efforts for parsing the interface language and formal

22

Menu Choice Working File

i File Edijt Insert Qomponent Display Outputs ’

Working Area

Institution

Figure 3.7: The frame for the semantic analysis tool.

object algebra specification language. The frame for the semantic analysis tool is built
based on the X/Motif toolkit, which is shown in Figure 3.7.

The different menu choices has the detailed selection items described at the beginning
of the chapter for adding/deleting/updating different entities. The browsing and
navigating capabilities are also provided. The working file indicates whether there are
the problem statements that are being processed. The working area is a push-button-
oriented area where the problem statements can be highlighted to be specified as the
different entities or that the information for the certain entities can be retrieved by
clicking on the entities. Insertion of the domain knowledge unspecified in the problem
statements can also be realized through using the proper menu choice.

The other important aspect of the implementation for the approach, the layout sup-
port tool, needs to be developed. Many algorithmic investigations have been con-
ducted to compose some proper algorithms to be used by the tool to perform the au-
tomation in generating the diagrammatic layouts for class/object diagrams and event
trace diagrams based on the textual results. Since the transformation rules have been
developed for transforming event trace diagrams to a state transition diagram for each
class in [33], they will be incorporated into the layout support tool.

3.4 User Interface Specification Language

In order to provide a knowledge-based repository for all the derived object-related
components, we have developed a user interface specification language to record all
the semantic analysis results made by users using our tools. The language is in
ASCII format and similar to the hypertext which can be easily viewed by users.
Proper manual modifications can be performed on the repository for recovery of any
unexpected failure from the tools (e.g. accidental tool crushs). The BNF syntax of
our language is presented in Appendix A.

The flex (fast lex, lexical analyzer) and yacc (syntax parser) UNIX tools have been
used to parse the language. The parsing scheme of the language has been implemented.
Close integration between the language and the CASE tool will be developed further.

23

Without proper verification of the OOA results, some errors can be hidden, which in
turn will cost greatly in the later development stages, even in the maintenance stage.
We have incorporated formal methods in the object-oriented concept to develop the
verification scheme for the OOA for distributed systems [29], which can be used in

our OOA phase.

The steps of the verification scheme are:

e Derive formal specification for object-oriented analysis.
e Convert formal specification into graphical representations.

e Systematic comparisons between graphical representations and user requirement
specifications.

In order to assist developers to capture more object-related information from user
problem statements, our CASE tool provides developers an underlying knowledge-
base for storing and retrieving semantic meaning of user problem statements and
various visual aids (e.g., font, color) from developers’ inputs. The entire tool is a
push-button-based view and provides strong interactive capabilities for developers to
derive various object-related components with different menu selections. It is the
front end to the follow-on OOA and OOD. It functions well with developers’ close
participations. We have completed the display aspect of the tool, such as font and
color manipulations and many operations, such as file open, close, reopen, spawn
(including spawn either another display of our CASE tool, or default object-oriented
drawing tool, e.g. ObjectMaker, OMTool, etc.).

We have also extended our graphical user interface specification language. Besides
static behavior of user problem statements, More constructs are added to represent
the dynamic behavior of user problem statements. Dynamic behavior, expressed in
event trace diagrams and state transition diagrams, will be described using our CASE
tool prior to the OOD. Intuitions on static and dynamic behavior of user problem
statements can be expressed extensively in our language and displayed on our tool.
Flexibility in our language from both static and dynamic sides can significantly im-
prove expressiveness of developers’ intuitions and provide more complete information

for later stage of analysis and design.

24

Chapter 4

Communication Estimation Tool
and Object Clustering

In this chapter, we will present our approach to estimating the inter-object com-
munication and clustering objects into groups. Our clustering approach focuses on
reducing inter-cluster communication and increasing the parallelism among clusters.
At the system design stage, the actual communication costs among objects are not
available, we need to estimate the inter-object communication first.

4.1 Characteristics of Communication

How to effectively estimate timing for communication and concurrency is critical to
our object partitioning and grain size analysis algorithms. We have investigated the
effect of following three factors on inter-object communication:

e Module size, which is determined by the number of bobjects,‘complexity of execu-
tion steps in terms of sequential, IF-THEN-ELSE, and recursive /iterative control

structures.

e Fan-in and Fan-out, which indicate how the input and output of any execution
step are organized.

e Data and control dependencies, which explicitly express the relations among
execution steps, objects and modules.

We have developed a set of tools to collect data about the relationship between the

three factors and the actual communication occurring during the execution of some
typical parallel applications. The major functions of these tools are:

e Tool to read the source code of a parallel application as input, and approximately
determine the above three factors by analyzing the code.

25

e Tool to help user insert some timing code to the source program to record the
communication time during the execution.

e Tool to investigate the relationship between the three factors and the communi-
cation time.

We have fed many other segments of source code into tools and get more accurate
information about how module size, fan-in/fan-out, and dependencies affect commu-
nication statistically. The communication estimation will be more precise after we

collect enough data in a specific application domain.

In spite of the fact that the measurement of concurfency is more difﬁcult, we develop
similar programs to investigate the relationship between the three factors of objects

and the concurrency within them.

After collecting a substantial amount data about the relationship between the amount
of communication and the three factors of an object, i.e. module size, fan in/fan out,
and dependencies, we have the following conclusions on how the three factors affect

the actual communication during pregram execution:

1. If an object is called by several objects, the size of data exchanged between
a calling object and the called object is proportional to the size of the calling
object, where the size of object is defined by the sum of the number of methods

and the number of parameters.

2. If an object calls a number of objects, the size of data exchanged between a called
object and the calling object is proportional to the size of the called object.

3. For a pseudo-active object, the size of data flowed in is approximately the same
as the size of data flowed out.

4.1.1 Communication Estimation Algorithm

We have integrated the communication estimation tool in the CASE tool for semantics
analysis of problem statements. When specifying the relationships among classes and
objects, the user may easily indicate the amount of communication between classes
or objects. We are also incorporating the implementation of the object-partitioning
algorithm into the CASE tool, and demonstrate the analysis and partitioning results

to users graphically.

The general formula for the time of transmitting a message of length n is given by

[35]:
Teom = a + fn,

where o is the latency, n is the size of the message, and § is the coefficent which is
inversely proportional to the media bandwidth. ’

26

According to the above formula, it seems that the communication time should be a
linear function of message size, but from the result we collected in 10Mbps network
and 100Mbps network, we found out that the latency in the networked environment
is so large that the communication time seems to be invariable if the message size
is smaller than 10KByte. Subsequentially, we assume that communication cost is
constant for each instance of communication in our communication estimation because

of the following reasons:

e Networked workstations are becoming popular for parallel computing.
e Our experience for both 10Mbps and 100Mbps networks are true.

e Most of the messages in an object-oriented application are usually smaller than
10KB. ’

Hence, the total communication cost is dominated by the frequency of interactions
between two objects.

We developed our communication estimation algorithm based on the above observa-
tions. We introduced a numeric value, called "trust level”, for each communication
frequency. The frequency assigned by users has the highest trust level because it is
not estimated by the software designer.

The communication estimation algorithm can be described as follows:

Step 1 Computing the size of each object. Assign a trust level for each interaction
between two objects. If the frequency has been given by the user, it has the
highest trust level; otherwise, it has the lowest trust level.

Step 2 Select an interaction with the highest trust level, whose associated objects
have some other interactions that have no frequency assigned. Compute the
frequency according to the above observations for all the other interactions of
the two objects. Decrease the trust level by one and assign it to the newly

computed frequency.

Step 3 Repeat Step 2 until each interaction has a frequency assigned.

The following example illustrates our algorithm to estimate the unspecified commu-
nication costs in the directed graph shown in Figure 4.1(a).

1. Compute the object size for each of the eight objects. The user-specified fre-
quencies of interactions from the object of size 12 to the object of size 10 and
that from the object of size 8 to the object of size 6 are assumed to be 25 and
30 respectively. The corresponding trust levels are set to 1 (logically high), and
the trust levels for all other interactions are set to 100 (logically low). These are
shown in Figure 4.1(a). :

27

F(out)=0 F(out)=0

F(in)=0

F(out)=0 F(out)=0 F(out)=0

(e)

F(in)=0 F(in)=0

F{out)=0 Flout)=0 Flout)=0

(b)

F(in)=0 F(in)=0

F(out)=0 F(out)=0 Flout)=0

(d)

=100 : Trust level

@ : Object and size

: (Qutlined) Frequency

30 : Object currently under estimation

— : Interaction

Figure 4.1: An example for ';llustrating our communication estimation algorithm.

28

Core ~ XmPrimitive

Basic Data : . Primitive Data
Position, Size, Color ; Border, Margin,
Visibility, etc. Highlight, etc.
Basic Methods Primitive Methods

Initialize, Expose, Resize, [} Inherit Inherit Border_highlight,
Destroy, Set_value, etc. Translations,
Q @ Extension, etc.

Data
Object Queue,

Object Position,
Relations, etc

F-------------4 WorkWindowClass
Methods

Add, Delete,
Modify, etc.

Figure 4.2: Classes and the relations among of the example.

2. Using observations 2, we find the frequencies for the interactions of the object
with size 12. Using observation 1, we find the frequencies for the interactions
of the object with size 6. Set the trust levels to 2 for all these interactions. All
these are shown in Figure 4.1(b).

3. Using observations 2 and 3, we find the the frequencies for the interactions of the
object with size 10. Set the trust levels to 2 for all these interactions. All these

are shown in Figure 4.1(c).

4. Using observation 2, we find the frequencies for the interactions of the object
with size 8. Set the trust levels to 2 for all these interactions. All these are

shown in Figure 4.1(d).

5. Using observation 3, we find the frequencies for the interactions of the object with
size 11. Set the trust levels to 2 for the interactions. The estimation process ends.

All these are shown in Figure 4.1(e).

4.1.2 Communication Estimation Tool

We have implemented the communication estimation algorithm on X Window system.
We defined the class hierarchy for the communication estimation tool. The X Toolkit
which used to develop the Graphical User Interface supplies two basic classes - the core
class and the XmPrimitive class, which are used for developing custom window classes.
We used the two basic classes to construct our own custom class — workwindowclass.
Figure 4.2 shows the classes and the relations among them.

Core is the class upon which all custom classes are based. It defines common char-
acteristics of all classes, such as their common data, methods, and basic resources.
XmPrimitive defines some extensions of the core class, such as the translation table,
the flag indicating whether or not the user wants to highlight the border when the

29

mouse pointer moves in, and the method to highlight the border. We put the local
data and methods in the workwindowclass class. The data and methods are needed
to manipulate the objects in the corresponding windows.

We also defined the X window hierarchy for the GUI tools. In Figure 4.3, each box
represents the class of a window, which is followed by the name of the instance of the
window. All the relations among windows are containment.

The RootWindow is the root for all the windows. The windows from Shell, Main-
Window, Frame, to WorkWindow are used to display the objects. We used various
windows to interact with the users, such as Command Window, Message Dialog Win-
dow, Selection Boz, List Boz, and Check Boz. The PulldownMenu is used to pop up
a menu when the user clicks a mouse button in certain areas, and the CascadeButton
is used to show a cascade menu when the user hits the menu bar.

We have implemented the window hierarchy for the communication estimation tool,
and built the major instances of the classes which were previously designed. We have
developed all the pop up and pull down menus, the dialog boxes for input and output,
and the message boxes for status or error notifications (e.g. warning, error reporting,

etc.).

We have developed the graphical expressions for the objects, their relations, and the
layout arrangement in the windows. We use a cycle to represent an object, and a
numeric value to denote its size. We use a line to represent the existence of communi-
cation relation between two objects, and two numeric values associated with the line
to denote the communication cost and trust level respectively as shown in Figure 4.4.

When the cursor traverses to the graphical representations of the objects and their
relations in the tool, the pointer changes to a "hand”, indicating that the user may
press the mouse button within this area to display or modify the detailed information
about the corresponding object or relation. Figure 4.5 shows the dialog box with the
information about the object Control Center which is selected by the user.

Figure 4.6 shows the initial state of an example for the communication estimation tool.
The question marks in Figure 4.6 mean that we do not know the communication costs
for those interactions at that stage. Figure 4.7 shows what we will have after applying
the estimation algorithm to the graph. Every interaction between two objects has a
numeric value denoting the communication cost.

We have adopted and implemented the rules for the graphical layout of the object
hierarchy. The estimation tool automatically divide the objects into layers according
to their distance from the root of the object hierarchy. Here, we define the active
objects as the root of the object hierarchy, and the distance is the maximum number
of nodes between one object and the root. The objects in a layer be distributed
equally in that layer. The tool detects if any two of the graphical expressions for the
object or their relations are overlapped or too closed. If so, the tool automatically
adjusts the positions of those objects at the same layer to avoid the overlapping.

Because of the limited display space, we have decided to use two ways to satisfy the

30

ealy »
yiom |_ MOPULMYIOM _ puf4— luojingepessen

up3 — [uoyngapeose) 8ji4 —|uojingapease)

sweld —| eweld — eqnuay —| jeguepy —

#x8ju0y Ioo_m_ommmmmmz_ e0p[dak/puld I_ X0g08Y9 _ Adog—{ uonngusng — uado —| xogiayes UMUIEN —| MOPUIMUIB —

nuswdisH —|nweumopying pul @8_:& a:ms\%mgogi nusyali4 nuswumoping§ feserdor — L —

MOpUIMIOOY

Figure 4.3: The window structure for our communication estimation tool.

31

T
ks

s

Figure 4.4: A section of the graphical expression of objects (12, 16, and 25) and their relations.

32

5 °\\W~7§- % w
__estimation

-

Figure 4.5: An example of the interface for modifying the object “Control Center” (25).

33

Figure 4.6: An example of the initial state (input) of our communication estimation tool.

Figure 4.7: An example of the result of our communication estimation tool.

34

requirements for the expression of higher abstractions and detailed information. They
are:

Zoom in/out The users can zoom in or out the graphical expression of objects and
their relations to get the desired information.

Iconified symbols for object Objects be icons in the graphical user interface and
hence we can show more objects within a fixed display space. The users can
double click the icons to access the corresponding objects.

The icons which symbolize objects also help user modify the diagram easily since
the users can change the information in an object through the dialog box instead of

drawing tools.

Our estimation tools can show how the estimation is done by demonstrating the esti-
mation progress step by step. The users can input or change information in the object
diagram any time during the progress. They also can turn on or off the demonstration.

4.2 Object Clustering

4.2.1 Clustering Model

A parallel application is a collection of separate cooperating and communicating mod-
ules called clusters. A parallel application is modeled as a weighted directed acyclic
graph (DAG) G = (V, E, i, A). In graph G, each node v € V represents an object
whose execution time is p(v), and a directed edge e;; € E between node 4 and j
represents that object O; should complete its execution before object O; can start. In
addition, there are some kinds of data communication between object O; and object
O,, which must happen after the completion of object O; and before the start of object
O;. The delay incurred by the communication is A(O;, O;) if object O; and object O;
reside on different processors; otherwise, the delay is zero. Such dependencies are due
to data transfer or control transfer. In either case, the DAG establishes a precedence

relation.

Figure 4.8(a) gives an example of a DAG. Each circle in Figure 4.8(a) denotes an
object, and the number inside it denotes the execution time. Each arc in Figure
4.8(a) denotes a precedence relation between two objects and the number associated
with it denotes the communication delay.

A cluster is a subset of node set V, and clustering is to divide V' into a number of clus-
ters. Researches have investigated two versions of clustering, depending on whether
or not duplication (or recomputation is allowed). In clustering without duplication,
the nodes are partitioned in to disjointed clusters and each node in the original graph
is in only one cluster. In clustering with duplication, a node may have several copies
in different clusters. Theoretically, for the same DAG, clustering with duplication

35

A @ A @Y A @)
! ‘\ 1 \\ / \\
I 1 i \ ! \
S CIR TR (IR C
@ 1 tw@ 1w 1 T=18
|\ 4 ,, ‘| 4 ,' ‘\ 4,
\\ 7 \\ 7 \‘ ,I
v#5(9) #5@)/ \#5(9)

Figure 4.8: (a) The original DAG, (b) clustering without duplication, and (c) clustering with dupli-
cation. _

36

produces a schedule with a small total execution time than that of clustering without
duplication.

Processor
Time P1 P2 P3
1 O1
2 03
3 02 | O4
4
5
6 Os

(b)

Figure 4.9: (a) Clusters of a DAG and (b) Gantt chart of the clusters in (a).

For example, for the DAG shown in Figure 4.8(a), the total execution time is 24 when
duplication is not allowed, and the total execution time is 18 when duplication is
allowed. In the real world, object duplication is almost impossible because these ob-
jects which need to be duplicated usually have interactions with users or I/O devices.
For instance, in Figure 4.8.(a), O; may perform the input functions, which receive
the initial data from the standard input, and O may collect the results produce the
visible output to the standard output. If we duplication them as in Figure 4.8(c),
the user has to type the data to all the processors one by one, and he or she needs
to check the results on different screens. This situation is unacceptable. So, we only
discuss clustering without duplication.

A schedule of a cluster C; is a function f

fC’z-—)[0,00)

which maps each object O; in C; to a starting time on a specific processor. The
schedule should satisfy the following condition: For every immediate predecessor On
of O, O, € C;, if O, € C;, then

f(Om) = f(On)

otherwise,

f(Om) + A(Om, On) 2 (On)

37

A schedule of a DAG is a combination of the schedules of all the clusters. It can
be represented informally using the Gantt chart. A Gantt chart consists of a list
of all processors in the target system, and the lists of the start and finish time for
every object. Figure 4.9(b) is an example of the Gannt chart for the scheduling of
the clusters shown in Figure 4.9(a). According to Figure 4.9(b), object O; will be .
assigned to processor 1 at time 0, and object O3 will be assigned to processor 1 at

time 1.

A clustering C of DAG G is optimal if there is a schedule S of C', whose total execution
time is equal or less than any other cluster C' and S’ of G. The problem of finding
the optimal C' of S is NP-complete even when we ignore the communication delays.
The large computational complexity of optimal solutions has created a need for a
simplified suboptimal approach. One set of heuristics is considered better than others
if its solutions are closer to the optimal solution more often. The problem addressed
by our algorithm is the following: Given a directed acyclic graph G and the number of
processors which are fully connected, find a good clustering for G without clustering

duplication.

4.2.2 Our Clustering Algorithm

In this section, we will present list-scheduling heuristics for clustering a given directed
acyclic graph for a parallel application. List-scheduling is the dominant method of
scheduling DAGs. In list-scheduling, each node is assinged a priority, and a list of
ready objects is constructed in the order of decreasing priority. Whenever a processor
is available, a ready node with the highest priority is selected from the list and assigned

to the processor.

The major differences among list-schedulers are their heuristics which are used to
assess node priorities. The heuristics range from simple to polynomial complexity in
terms of the number of nodes to schedule. The simple heuristics can schedule the graph
in time O(n), which the most complex ones need O(n?). Early heuristics usually ignore
communication delays. Although later heuristics consider communication delays, they
seldomly assign priorities according to the graph topology.

Our heuristics assign the priorities according to the execution times, communication
delays, critical path, and the topology of the DAG. In our clustering algorithm, the
list of the objects may not be the same for all the processors. The priorities are
assigned dynamically during the scheduling for each available processors as illustrated

in Figures 4.10 - 4.13.

Definition 4.1 The minimum complete time of a DAG is the maximum sum of
execution time of the objects over all the paths from the root to the leaves of the tree.

It is obvious that the optimal execution time of the DAG is greater than or equal to
the minimum complete time.

Definition 4.2 The object level of an object O; in a DAG is the maximum number

38

of objects on any path from the O; to a terminal object.

For a given moment, the priority P of object O; for processor j is

P=a+T+W,

where « is the communication cost that be saved if object O; is assigned to processor
4, T is the execution time of object O;, and W is the number of children of object O;

divided by object level of O;.

o may change its value from processor to processor and from time to time, but 7" and
W are invariable during the scheduling. Hence, we call T + W static priority in our
example.

Now, we present our algorithm as follows: Apply the list- scheduling algorithm to the
object graph using our heuristics. After the scheduling, assign all the objects scheduled
on a processor into a cluster.

Clustering
begin
NOW = O;
Al1l_cluster = EMPTY;
do {
while(processor K is available)
assign priorities to ready objects;
select the object with the highest priority;
assign that object to the processor;
put the object into cluster_K;
end while;

NOW++;

if (processor K has an object assigned)
object_complete_time--;
if (object_complete_time == 0)
processor_K = available;
end if;
end if;

if (object M is not currently running or finished)
if (any of its precedors are finished)
delay_between_the_two_objects——;
end if;
end if;

} until(all objects are assigned and

39

Figure 4.10: The original DAG of an example.

all processor are idle);
end;

4.2.3 Experiments

We have implemented and experimented this algorithm in on various examples. We
have developed programs to automatically produce DAGs. The number of objects
of those DAGs, n, is a random number ranging from 10 to 30, and the number of
edge is also a random number ranging from n to 3n. The execution time for an
object is randomly selected from 1 to 20, while the communication delay is randomly
from 1 to 12. The processor number is always 4. We have applied our algorithm to
more than 3,000 DAGs produced by the program. According to our experiments, the
total execution time of our clustering algorithm is 1.10 times more than the minimum
complete time of a DAG. Since the minimum complete time is less than or equal to
the optimal clustering for any DAGs, and our results are only 10 percent more than
the minimum complete times of the DAGs, it is quite obvious that our algorithm is

close to the optimal.

To provide some insight of our experiments, let us consider the DAG shown in Figure
4.10. There are 10 objects and 14 edges. The static priorities for O; to Oy are:
49, 34, 29, 29, 20, 18, 16, 19, 10, and 7. At time 0, the only object ready is Oy,
and hence it is assigned to processor 1. At time 12 shown in Figure 4.11, O, is
completed. There are three objects ready for processor 1, but none of them is ready
for other processors. Hence, we should construct the priority list separately for each
processor. O is selected for processor 1, and the communication from O; to O3 and
the communication from O; to Oy4 are undergoing. At time 16 shown in Figure 4.12,
the communication from O; to O3 is completed, and Oj is ready and assigned to
processor 2. At time 45 shown in Figure 4.13, Oy is ready and assigned to processor

40

Figure 4.11: At time 12, O; finishes.

Figure 4.12: At time 16, O is assigned to processor 1 and O3 is assigned to processor 2.

41

,
. 0O, 112"
Time 45 e
Plal PES
td 1 ~\
. 1 ~
.] S
i 1 ‘5
. <
e 4. .
L ' ~
. 1 N
.
O, 5 it (o NN w204
94, '8 10
y ’) ’ ' s
> P S S
’ . A ’ .
4 - ’ A
g N g N
4' xd . M . N
v . ’ \ 7 .
, P r'd A Y ’ AY
- ’ AY ’, A Y
4 .7 Q ~ . Ay
e o€ » ! *. 0y
A b 1\
’ o ! 1
05 H [5 1 [' ['
A ! N A " _41
o o
. 4 i
~ o
™ 6 18
~ %
~ '
A0\ '
\‘, \\ ,J\
i [

Figure 4.13: At time 45, Ojg is assigned to processor 4.

Table 4.1: The scheduling result in Gantt chart.

Procassod
Time P1 P2 P3 P4

o o1

12 o2

16 o3

17 04

24 o6

27 o8

29 os

30 : o7

39 o9

45 ' o10

51 Done Done Done Done

42

- Figure 4.14: The Clustering result of the example.

4. The process of assigning objects ready to available processors is repeated until all
the objects finish their executions. Finally, we get the Gantt chart for the scheduling
as shown in Table 4.1. The clustering result is shown in Figure 4.14. We have four
clusters for the given DAG. The total scheduling time for the optimal clustering, which
for this simple example was obtained by exhausive search over all possible schedules
of all possible clusterings, is 51. The minimum complete time for this DAG is 45.

43

Chapter 5

Parallelism Analysis

In concurrent systems, computations are performed by cooperation of several inde-
pendent execution threads. Identifying concurrency at a higher level is related to the
underlying computation model and programming language used. In our approach we
perform concurrency analysis in the OOA phase of the development process. The
analysis result and the estimated communication cost determine clustering of objects.
The difficulty to analyze concurrency before programming is that we do not have
detailed information about control and data flows and data dependence. Thus, the
analysis result may only discover part of the potential concurrency in the application.
In this chapter, we will present an approach to analyzing concurrency between object

invocations.

5.1 Our Parallelism Analysis Approach

Our approach is based on the following model:

e Object corresponds to a process. Process is the basic unit of scheduling, and thus
the object is the unit for parallelism analysis. We do not consider parallelism

inside the object.

e Communication between objects is in the form of Remote Procedure Call (RPC).
The calling and the called processes have a Master-Slave relation, and control is

passed with sending message.

e Objects are statically allocated, and no object migration occurs during the exe- -
cution.
Before we present our approach, we need the the following definitions.

Definition 5.1 The static state of an object O is the values and links held by an
object, denoted by *O.

44

Figure 5.1: The dynamic states and critical actions of an object

Definition 5.2 The dynamic state of an object is the state of the object at a particular
time instant. There are three dynamic states in the life of each object: An object is
asleep when it is created, but not invoked. An object is active when its own method
is being executed after it is invoked. After an object sends a message to other object,
the object is waiting until the answer message (either value or control) returns.

The critical actions of an object corresponding to its dynamic states are: An object is
said to wakeup when the object becomes active from asleep upon an invocation. It is
said to sleep when it becomes asleep from active upon finishing executing its invoked
method. An object is said to wait if the object becomes waiting from active when it
invokes another object. An object is said to react if the object becomes active from
wasting when it receives the return message from an object it invoked.

Figure 5.1 shows the dynamic states and critical actions of an object.

Definition 5.3 An invocation I=([*0’,M’],[*O, M]) means the method M’ of object
O’ invokes method M of object O when O’is in state *O’and O is'in state *O.

Definition 5.4 The task T(I) of an invocation I=(/*0’,M’],[*0,M]) is all the opera-
tions in the control thread between the instant that O wakesup and the instant that O
sleeps. A subtask of T(I) is defined as all the operations in this control thread between
the instant that O waits and the instant that O reacts.

Figure 5.2 gives an example to illustrate these definitions.Initially all objects 01, Os,
Os, Os, Os, Og are in asleep state. Now, O; receives an invocation I, it wakes up and
becomes active and remains active until it invokes O, and then it waits and becomes
waiting. After a return message comes back to Oy, it reacts and is in active state
again until it invokes Og. After return message from Os comes back, O; continues

45

0 fo suonoy Y0 fo apous Bunsixg,

; dATISV
AALLDV
— IDVAY

ONLLIVM
g - LIVM S
ovay) AALDV 5
Kel
o
5
(]
3
8
2
[}

g <

(3]
8
g
ONIZIVAM s
} Y
[
g,
&

LIVM TALLDV

dNAIVM
, ' JdAAISY
‘0 0 o 0 © 'o

its execution, sends back message to its invoking object and then sleep and becomes
asleep. T(I.) is the task with invocation I, and T(I5) is the task with invocation I.
They are two subtasks of T(I).

Now we would like to present our approach to identify potential concurrency. For
an invocation I=({*0,M],[*0’,M’]), the static state of O preceding that O makes the
invocation and begins to wast is denoted by (*0)(I); the state of O following the
completion of the invocation and the beginning to react is denoted by (I)(*0). Then,
for invocations from O, such as

Li=([(*0)(1,),M],[*(01),M]),
L=([(*0)(L),M],[*(0;),M,]),

if (*0)(I,) does not depend on (I;)(*0) and (*0)(I;) does not depend on (I;)(*0),
the two invocations are independent of each other and can then be executed concur-
rently, or I; and I, can only be sequential according to the dependency relation.

To analyze the dependency of two invocations in the design phase, assume that we
have invocations

L=([(*0)(I),M],[*(0:),My]),
L=([(*0)(1), M],[*(0s),M>]).

There are three possible relations between I; and I,.

e If I; involves O as a client and O; as a server, and I, involves O as a client or an
agent, then I, depends on I;. This is denoted by SEQ(I,, I5).

e If 0;=0,, we have SEQ(I,I,) or SEQ(I>, I,).
e In all other cases, we have CON(I1, I,).

The following is the formal description of our approach to identifying potential con-
currency: ’

T={ T(I)| I=(SYSTEM, ACTOR)};

While T is not empty{

Take a task T(I) from T,

Find tasks in T(I) which have multiple subtasks;

Let the set of such tasks be {T(I;)|j=1,m};

While T'(I;) is not empty{

Take the first task T'(I;) from it;

Let Li=([*0",M’],[*0O,M]);

Let Subtasks of T(I;) be { T(Ix)/Tx=([*0,M],[*Or,My]), k=1,n}

For any pair of subtasks T(I) and T(I;){

If (*O)(I}) does not depend on (1;)(*0) and
(*0O)(I,) does not depend on (I)(*0) and

47

O; is not equal to O,
then CON(Ik,Il);
else SEQ(Ik,Il) or SEQ(IZ,I]C)
according to the order they appear in specification;

}
}
}

5.2 Implementation

We identify potential concurrent objects according to the object state, event trace
and method descriptions of the OOA result. The invocation precedence, and data
exchanging features of the invocations are the essential elements for the identification

and expression of parallelism.

The results of our object-oriented analysis (OOA) and object-oriented design (OOD)
are expressed in the object algebra specification language [29]. The specification cov-
ers static model and dynamic model of the system. Static model includes description
of classes, objects, inheritance, attributes, relationships and methods. The dynamic
model is about those aspects of a system that are concerned with tie and changes.
Dynamic modeling deals with flow of control, interactions, and sequencing of opera-
tions in a system. The major dynamic modeling concept is events, which represent
external stimuli and states, which represent values of objects.

We use the following representations in concurrent object analysis:

e State transition diagram

The dynamic model consists of multiple state transition diagrams, with one state
transition diagram for each object. A state transition diagram relates events and
states. When an event is received, the next state depends on both the current
state and the event. A change of state caused by an event is a transition. A -
transition can be expressed as follows:

Transition (S x E(obj) = S’ x E;(obj1) x E(objz) x ... xE,(obj,)),

where S is the state of the object being altered by the transition, E is the input
event that causes the transition and obj is the object which requests the input
event. S’ is the state after the transition. E{, Ey, ...E, are output events which
are generated by the action associated with the transition, and objy, obja,..., 0bj,

are the destination objects.

From the textual specification result of OOA and OOD, we can. establish such
a state transition diagram for each object. Figure 5.3 shows the state transition

48

States of object O

H EZ
O’ -——-E-l—;—-;—> S1 ------------------ s
: E3 y
IS SRR A
E4
S, [vooTTTTTTTTTTT :
E, !
[— = === e —— o B
Eﬁ
Ss ________________ |
E, :
[~ — - - — % -~ m e mm = -~ C

Figure 5.3: The state transition diagram of object O.

diagram of an object O.

e Transition trace

Another representation of dynamic behavior is transition trace. While the state
transition diagram describes the state transitions of an object, a transition trace
describes a system-wide event sequence. A transition trace is an ordered list of
transitions between different objects.

To establish a transition trace, we have to first identify initial transition. The
initial transition of each class is one with no input event. A transition with input
event means it shall be triggered by another object. After identifying an initial
transition, we find the objects invoked by the actions in the initial transition and
the transition in the invoked object state transition diagram which has the output
event of the initial transition as the input event. Then, considering this transition
as the initial event, continue the above process until the terminal transition is
reached. Thus, we can establish the event trace. The transition trace is also an
event trace, since what link the transitions are the transition events. Figure 5.7
shows a transition trace for a scenario of an elevator system in Section 5.3.

One-way and two-way invocation

Because of the information hiding and encapsulation of object-oriented technol-
ogy, it is not desirable or possible to analyze the data dependence inside an
object. Thus, the nature of invocation remains to be the major clue for paral-
lelism analysis. '

49

States of object O States of object O

case 1 case 2

Figure 5.4: Two state transition cases for object O.

one-way tnvocation is an invocation which just passes parameters to
another method, but does not require data back. We denote it as —.

two-way tnvocation is an invocation both passes parameters to and
requires some data back from another method. We denote it with <>

one-way trace is the consecutive one-way invocationsin an event trace
together form a one-way trace. We denote a one-way trace as =.

two-way trace is the consecutive two-way invocations in an event trace
form a two-way trace. We denote it as &.

con of two objects O; and O; implies that O; and O; can be invoked
in parallel. We denote it as con(O;, O;).

The one-way or two-way invocation is important for dependency analysis. The
& part in an event trace is the most restrictive part for parallel execution. For
example, we have such a two-way trace: O1.M; < Oy.My < O3.M3 < O4.My,
and we want to analyze the parallel execution possibility of O in another event
with objects in this event. The existence of con(O, O;) depends on the existence
of con(0,0,), con(0,03), and con(O, O4). That is whether O can be in parallel
with an object O, in the two way trace depends on whether O can be in parallel

with all O;’s after O; in the two-way trace.

To identify concurrency from the OOA and OOD result, we explore the state transition
diagram of each object. In the state transition diagram of object O, two states Si,
So are logically consecutive if there is a transition which begins at S; and ends at
S,. Assume that there is an event Ej that makes O to enter state S; and produce
an output event E;, E) will invoke another object O; by invoking O;’s method M;.

50

There are two cases of how an object’s output event from a state is related to the
event from the logically preceding state as shown in Figure 5.4.

Correspondingly, we identify concurrent events and objects that can be invoked con-
currently in these cases.

In the first case, the output event E; from S5 does not depend on the output event F;
from S;. These two events are from the consecutive states of one object. Therefore,
we can say that objects O; and O, can be invoked concurrently by object O.

The second case is F; invokes O; in a two-way mode or E3 occurs upon receiving the
event Fy from Oy, either from O; directly or from other object in the event trace from
O:. E3 may depend on the return value. We need to check the event which Fj5 invokes
in object Oy. If the following invocation from FEj is a one-way invocation, this means
that it does not need to pass data to the invoked event. Only in this case, we can say
that O; and O, can be invoked concurrently.

5.3 An Example

Consider an elevator system in a building, which consists of an elevator, summon but-
tons, summon lights, destination buttons, destination lights, arrival lights, overweight
sensor, floor sensor, motor, door and a controller [36]. One scenario of actions is given

as follows:

When the elevator goes to a floor, the floor-sensor is activated. Then, it sends a signal
to the controller to tell the elevator’s arrival. The controller turns on the arrival light,
and checks the summon and destination light of the floor. If there is a passenger
who wants this floor as a destination, then the destination light should be turned
off. If there is a summon from this floor, the summon light should be turned off.
Then, the controller stops the motor, and tells the elevator it is safe to open the
door. The elevator then instructs the door to open itself. After the door is closed, the
elevator checks the overweight sensor to see if it is overweight. If it is not overweight,
then it informs the controller that it is now ready to receive movement instruction.
Upon receiving the elevator ready signal, the controller checks the destination light
and summon light status to get the next destination relative to this floor. Then the
controller gives instruction to the motor to go.

The scenario is shown in Figure 5.5 including only the objects, services, relationships,
messages related to this scenario. The scenario is described as:

1. The ELEVATOR reaches a floor.

2. The FLOOR_SENSOR tells the CONTROLLER the arrival of the ELEVATOR.
3. The CONTROLLER turns on the ARRIVAL_LIGHT.
4.

The CONTROLLER asks if there is a passenger who wants this floor as a desti-
nation.

51

5. The CONTROLLER asks if there is a summon from this floor. If so, turns the
SUMMON_LIGHT off. _

The CONTROLLER tells the MOTOR to stop.

The CONTROLLER tells the ELEVATOR that it’s to open the door.
The ELEVATOR tells the DOOR to open itself.

The DOOR tells the ELEVATOR it its closed again.

'10. The ELEVATOR asks the OVERWEIGHT_SENSOR if the ELEVATOR is over-
weight.

11. The ELEVATOR tells the CONTROLLER it is ready to move now.

© o N o

12. The CONTROLLER asks the floor of the next summon.
13. The CONTROLLER asks the next destination floor.
14. The CONTROLLER tells the MOTOR to go up or go down.

Figure 5.6 shows the state transition diagram for class CONTROLLER. Figure 5.7
shows the transition trace diagram for the scenario.

As we can see in Figure 5.7, Turn_on, the output event from state S0, will invoke AR-
RIVAL_LIGHT. The invoked method in ARRIVAL_LIGHT is Turn-on_myself. This
invocation method is a one-way invocation, which means that the invoking object
CONTROLLER does not need to pass any value to it and does not require any return
value from the event it invoked. On the other hand, after issuing Turn_on event,
CONTROLLER will go into state S1. The output event from S1 If floor_summoned
will invoke Report_on_off status in SUMMON _LIGHT. Report_on_off_status does not
require input value to be invoked. This means that If floor_.summoned can indepen-
dently invoke SUMMON_LIGHT without the result from CONTROLLER’s prior out-
put event, Turn_on ARRIVAL LIGHT. Therefore, the ARRIVAL_LIGHT and SUM-

MON_LIGHT can be invoked concurrently.

Continue this analysis with the state transition diagram of the CONTROLLER, the
next event from state S2 is Turn_off. Because this event occurs upon the input event
to 52, Report_on_off status from SUMMON_LIGHT, and Report_on_off_status pass
data to CONTROLLER, so SUMMON_LIGHT and SUMMON_BUTTON can’t be
concurrently invoked. The next event from state S3 If_floor_destination does not
need any input event to S3, and hence it can execute concurrently with the event

Turn_off from the prior state S2.

After applying the same method to the complete diagram, we can find that the fol-
lowing pairs of objects can be potential invoked concurrently :

(SUMMON_LIGHT, ELEVATOR),
(SUMMON_BUTTON, SUMMON_LIGHT),
(CONTROLLER, SUMMON_LIGHT),

52

(DESTINATION _LIGHT, SUMMON _LIGHT),
(DESTINATION_LIGHT, SUMMON_BUTTON),
(DESTINATION_LIGHT, CONTROLLER), |
(ARRIVAL_LIGHT, SUMMON _LIGHT),
(OVERWEIGHT_SENSOR, CONTROLLER),
(MOTOR, ELEVATOR),

(MOTOR, DESTINATION_LIGHT),
(MOTOR, DESTINATION_BUTTON),
(DOOR, ELEVATOR),

(DOOR, FLOOR _SENSOR),

(DOOR, OVERWEIGHT_SENSOR).

53

(" uonoe-ixou-sourumoe)

iojeas(s uadQ

(" JesAwrjo wmny,) uogmﬁ.douw
JIesAwuo wny, UonRUNSIPTIOON I
pauowuIns"I00[" J1
€) joTwmny uoTwmyj,
L JHOI'T TVATIYY)
@D © ATIOYLNOD @D (©
\ J
(L) 2]
(€D
0D

JesAw-doig

g
e
(2]
>
w
[
2
IS
JO.LOW 5
S~ (4] I
@
=
-~
- 5
[ALLIE-100[J-AJTION) :m =2
3
s 10— ™~ . 5
JEsAW 330 wn g, YOSNES-400Td . 13
Paso[o~I00(] .:8»5|=0|=m= L ~— M
100p-td() (®) snje}s-Jjo-uo-irodayy _ L <
JlesAurjjo-wng, =
400da)] rFIOS-ZO;«\Z;me (WBI o wmn) JresAw"uo-umy, 0
— d S uo wny, snjes-jjo-uo-podoy m
.20
— =
s C
Em:lﬁotE:U L NOLLN9 NOWNWOS) L LHOI'T-SNOWINS)

IS uoTwng,

NO.LLNG-NOILVNILSHJ
- J

(1ySemIoro uoday) (Apeay) an
1) Joop-uadQ
10SUS-I00[J-IBATIOY
L qo mzmmnrﬁmommaﬁm—\wmuk (m
L JOLVATTH)

Notify_elevator_arrival

(FLOOR SENSOR)+t e s oo resszesseeseeeeeeeo>{ ARRIVAL_LIGHT)
Turh_on
f floor_summoned ,
-------------------- >(SUMMON_LIGHT)

_____ Report_on_off_status

Turn_off
-------------------- >(SUMMON_BUTTON)

If floor_destination

rvveesseeeeeeoo»{ DESTINATION_LIGHT)
_... Report_on_off_status :

Turn_off

rwveveeieeeneseee - DESTINATION_BUTTON)

Stop_motor

Open_elevator

-------------------- _ELEVATOR

Determine_next_action

Figure 5.6: The state transition diagram for CONTROLLER of the elevator system.

55

; i uonoy IxeU suruueiq !

SnIElS 30 uo 1odey |

UOTIOEIXOU QUL !

sweIs— 3o uo yoday

UOTIOE IXoU QUIULISII(]

Apeay

WSramano oday

: ; : : : : Ew_umE?odH

vomwoﬂolhooﬂ

&o@l:umo

101eAR[uadQ

10j0wdoig

56

4 H
ST ygo umy,

JjoTumg,

sneis jjo"uo podoy

psuowyuns 1001 Jf

H .

EEEL N

T poump |

Figure 5.7: The transition trace for a scenario of the elevator system.

snjelsjjo~uo odey

: : m : uoneurisap iooy gy |

: ! : : ' : : -—

H : : . . ; ' : uo wngp, :

: : : : : : : : -—

m : : : : : : " i AmoN :
: : -——

m : : m : S oAmy

YOSNES IHOIT NOLLNg 1HOIT NOLLAE IHOIT JOSNES
IHOIEMIFAO ¥YOOd IOLOW “NOWWNS NOWANS NOILVNILSEd NOLLVNILSIA ~IVAINYY WHTIOWINOD —NOOTd HOLVAZTH

Chapter 6

Back-end Translator on A
Workstation Cluster

In this section, we will present the back-end translation which translates our superset
Intermediate Form 1 (IF1) to PVM/Sun C target language based on the previous
work of two other target language translators : nCube C and KSR C [8]. Various IF1
constructs for parallel functions, iterative WHILE loops, IF structures, and common
computational operations are identified and translated. The important issues about
designing inter-node communications and synchronization are also discussed.

6.1 Target Languages

There are two kinds of MIMD parallel architectures: shared-memory and distributed-
memory. In the shared-memory architecture, the processors share a single-addressed
memory. In the distributed-memory architecture, each processor has its own memory,
cooperative work must be done through explicitly specified inter-node communications
and synchronization.

We have developed PROOF /L back-end translators for distributed-memory worksta-
tion cluster using the same front-end as two previous back-end translators: one for
a distributed-memory parallel machine nCube and the other for a shared-memory
parallel machine KSR [8]. Since all these three translators were written in C and the
difference mainly exists in the communication and process control, we use similar data
structure for method’s code generation. Both of workstation cluster and nCube ma-
chine use message passing APIL. Our basic strategy for workstation cluster translator
is that starting from the nCube C translator, we establish a communication adapter
to simulate nCube message passing API. The process control mode is introduced in
section “Clustering and Dynamic Allocation Support”. The rest of this section lists
all the communication and process control APIs of nCube C and those PVM APIs
that are used in workstation translator to establish the adapter under nCube C APIs.

57

e The nCube C
The nCube C version 3 [37] consists of a comprehensive set of ordinary C prim-
itives and build-in functions. Several basic primitives for the parallel execution
and inter-node communication are:

— rexec: launch an executable program on a subset of processors. It involves
allocation of a set of processors, setup of a process table for each processor
within the node set, and execution of the program on each processor.

— ntest: a non-blocking way to test existence of messages from other nodes.

— nread: waits for messages and reads them whenever they arrive and sat-
isfy the type format set by the nread. The nread operation is self-blocked.
Inappropriate nread operations could lead to deadlocks.

— nwrite: sends messages from one node across the nCube high-speed bus to
another one with a type format.

All these primitives have substantially large communication overheads. There
are several other functions used to check the states of processors at run time on

the nCube parallel machine:

— whoami: reports a node condition during the run time.
— npid: return current node ID.
— ncubesize: return the hypercube size, which is 2’s power.

The nCube C itself does not provide any primitives to prevent deadlocks or to
synchronize physical nodes. Each node basically stands alone itself.

e The PVM/Sun C

The intended target environment is a cluster of networked workstations. The
workstation cluster that we worked on has 8 nodes connected by 100Mb FastEth-
ernet in our laboratory. These nodes are three SunSparc 4, three SunSparc 5

one SunSparc 20, and one SunUltra 1.

The parallel executing environment on workstation cluster is the PVM (Parallel
Virtual Machine) version 3.3.10 [38]. PVM is a software system that permits
a heterogeneous collection of Unix computers networked together to be viewed
by a user’s program as a single parallel computer. PVM transparently handles
all message routing, data conversion, and task scheduling across a network of
incompatible computer architectures. The system offers a library of standard
interface routines that can be called by user’s C program The routines that we
used in our translator are : : :

— pvm_spawn: starts new copies of an executable file task on the virtual
machine. Two arguments, ”"flag” and "where”, are used to specify options
that control where these new processes be spawn on.

— pvm._mytid: returns the Task ID of this process and can be called multiple
times. It enrolls this process into PVM if this is the first PVM call. This
Task ID is a global value on the whole workstation cluster.

58

— pvm_config: returns information about the virtual machine, including the
number of hosts, different architectures and information of every host: Host
ID, name, architecture and relative CPU speed.

— pvmn_initsend: If the user is using only a single send buffer, then this
routine should be called before packing a new message into the buffer. It
clears the send buffer and creates a new one for packing a new message. The
encoding scheme can be specified to send data between different architecture
machines. As all the workstations in our developing environment are Sun-
Sparc workstations, the messages at their original format can be understood
on any node. So we disable encoding to save marshaling time.

— pvm_pkbyte,pvm_pkint, pvin_pkfloat, pvm_pkstr: each of these rou-
tines packs an array of the given data type into the active send buffer. They
can be called multiple times to pack data into a single message. '

— pvm.send: labels the message with an integer identifier and sends it im-
mediately to a process specified by a Task ID.

— pvm._mcast: just like pvm_send, send a message in active send buffer to
several processes specified by a Task ID array.

— pvm_recv: is a blocking receive routine. It will wait until a message with
specified label has arrived from a specified process.

— pvimn_probe: If the requested message has not arrived, then pvm_probe()
returns 0, otherwise returns receive buffer ID.

— pvm_upkbyte,pvm_upkint,pvm_upkfloat,pvm_upkstr: These routines
unpack data types from the active receive buffer. The unpacking should be
done in the same sequence as the message is packed.

The PROOF/L code is translated into Sun C with extension of PVM function
“calls. All the generated programs run under PVM runtime daemon.

6.2 Object Cluster Allocation

Objects are clustered to a number of clusters each of which is assigned to and run
on a computing node in order to reduce the communication cost among objects. In
most cases, the number of object clusters in an application is more than the number
of computing nodes. In the workstation version PROOF/L translator, when clusters
need to be allocated, a node that has the least load is selected and cluster with the
Jargest number of objects is allocated to it. This procedure is repeated until all clusters
are allocated. The procedure will make sure no workstation will be overloaded.

The pseudo code of cluster allocation schema is given below :

CLUSTERS : cluster set to be allocated
Power (WSi) : computing power ratings of each node

59

{\tt for}(each available computing node WSi)

{ :
LOADi = get the number of objects running on WSi;
RPOWER = Power (WSi)/1000;

X

{\tt while}(CLUSTERS not empty)

{

Ci = the largest cluster in CLUSTERS;

{\tt for}(each available computing node WSj)
WEIGHTj = (LOADj + Ci)/RPOWERj;

WSk = the node that has the least WEIGHTk;
allocate Ci process onto WSk;

LOADk = LOADk + sizeof(Ci);

CLUSTERS = CLUSTERS - Ci;

} .

Power(WSi) is an approximate estimate of their relative computing power. Define
the slowest machine in the computing network with power 1000 and compare all the
others relative to it. In our workstation cluster, :

Power (SunSparc5) = 1000 Power(SunSparc4) = 1100
Power (SunSparc20) = 2000 Power (SunUltral) = 2200

6.3 Target Languages Code Generation

IF1 (Intermediate Form 1) is used to have graphical representations for PROOF /L
programs.

The translation from IF1 to target languages consists of three steps: parse IF'1 code,
structural linking and translation, as shown in Figure 6.1. :

6.3.1 Parse IF1 Code

IF1 code consists of types, edges, nodes, graphs, and numerical relations among them.
Because there are no explicit mechanisms to describe object-oriented concepts — classes
and objects — in the original IF1 syntax, extensions have been made for the IF1 code
to keep the class and object information for the back-end translation. All the class
and object information is stored in the IF1 type headers, graph headers, and object
headers. The following IF1 code describes these constructs.

1. The class’s composition:

T <Type.id> RECORD<next> %na =<class_.name>

60

Class Object Body

Structures Structures
(N
Pointer Linking
Parse among Types,
Types, Edges, Edges, Nodes,
Nodes, Graphs Graphs
IF1 Code Type Checking Translation to
—_— Target Code >
Classes, Objects Target Code
Build Consistence
Structures of Checking
Classes, Objects
Functional Call
Pattern Checking
Step 1 Step 2 Step 3

Figure 6.1: The translation steps from IF1 to a target code.

9. The class’s method header:

G <Type_id> <Class_Name.Method Name>

3. The object body part:

X 0 <Class.Name.Ob ject_Name>

The comment fields are only used for reference and ignored during the translation.

The execution sequence within a graph is sorted by detecting the dependency among
the nodes, edges, and their numerical linkages in the graph. The algorithm below
demonstrates the sorting of execution sequence:

seq = 0;
mark all the nodes unsorted;
for (each node) {
for (each input edge) {
if (each input edge is literal ||
not an output edge from an unsorted mnode) {
continue;
} else {
break;
}
}
if (all the input edges are checked) {
set order of current node = seq;
seq++;

}

61

}
if (any unsorted nodes left) {

report error,
exit(-1);
X

After types, edges, nodes, and graphs of the entire IF1 code have been scanned, class
and object structures can be derived through implicit class and object information in
the new nodes of the IF1 code. The information includes class compositions in types,
method names in graphs and object names in graphs.

6.3.2 Structural Linkiﬁg

After numerical relations among types, edges, nodes, and graphs have been identified
and built in the data structure during the first step, all these numerical relations are
converted to pointer linking between types and edges, edges and nodes, types and
graphs, and nodes and graphs. Method calls include four types:

e Built-in functional calls (denoted as imported functions in the IF1 code). They
include append_left, append.right, tail, head, last, inc, dec, null,
delay, while, etc.

e Global functions. The class GLOBAL is a class without any data structure but
methods. It is a collection for public methods, in which every method can be
used by any other classes or object bodies without any difference comparing to
using their own methods.

e Method calls within a class. Currently a class method can only call another
method within the scope of the same class, besides build-in and global functions.

e Method calls within an object body. Objects can call any methods available
within the entire scope.

In addition, GUARD structures within methods are detected for each class. It is
the only way for different objects in the PROOF /L code to synchronize one another.
These structures are represented as GUARD compound nodes. The text representa-

tion is shown as follows:

{

G 0 GUARD 1 (structure)

C The predicate needed to be realized to continue the execution

G 0 - GUARD 2 (structure) ,
C The body executed after the guard predicate above becomes true

} <node_id> GUARD 2 1 2

62

The number of input edges to computational nodes are verified, and edges for input
arguments to method CALL nodes are checked against method prototypes. Type con-
sistency checking is also applied to input and output data flows, which are represented
by edges, among all the simple nodes in the IF1 code.

PROOF /L parallel structures will be detected in two ways at the IF1 level:
e Detect alpha (apply to all) and beta (distributed apply) parallel functions
through data dependency among CALL and LBUILD nodes.

e Find a built-in parallel function call named delta (data partition) in the IF1
code.

6.3.3 Unique Data Structures

Since all the three target languages are C-extension, we use the same data structure
for the PROOF/L translators. We will mainly use PVM/Sun C to explain the steps
of translation. When differences between PVM/Sun C and nCube C or KSR C exist,
further discussion will be given.

In order to realize the functional features in the PROOF /L language, only two kinds
of data formats have been used: ATOM and SEXP. They are shown in Figure 6.2.

-J—>ATOM J——> NiL
Next — o » o Next

Figure 6.2: The data format of the translated target C code

ATOM: Type SEXP: ATOM

Cont Next

Concatenated structures for PROOF /L class compositions are represented by using
SEXPs. An initialization function for each class will be provided to initialize all
components within the correspondent class composition: 0 for the integer or float,
FALSE for the boolean, “’(empty string) for the string, NIL for the list. So there are
no explicit data definitions of classes at the C code level.

The main feature of the PROOF language is to combine the functional and object-
oriented domains together. In order to save the class and object information for the
back-end translation, we extend the IF1 to carry the class and object information
across PROOF /L code to target C code. We apply the data structures, ATOM and
SEXP, to realize all the functional features. Furthermore, lists used in the PROOF /L
are a type of heterogeneous lists, which is similar to those in LISP. A number of list
manipulation functions have been given, such as List Constructs [|(square brackets),
append-left, head, tail, append.right, null?, etc.

All other data types in the PROOF /L - integer, float, boolean, and string — are imple-
mented with single type, called ATOM, with the unique type code embedded inside.
The binary, boolean, relational and unary operations are applied in the following way:

63

verify type of the first atom depending on the operation;
extract content of the first atom; :

verify type of the second atom depending on the operation if
applicable;

extract content of the second atom if applicable;

apply the operation to content(s) of the atom(s);

compose a new atom with the result of the operation and

appropriate type;

The underlining unique interface for processing different data types gives considerable
flexibility to programmers, but sacrifices execution performance.

A functional language always involves recursion and PROOF /L is no exception. Re-
cursive function calls not only are resource-consuming, but also limit computational
capacity. Currently, there is no implicit recursion removal during the translation. An
iterative functional structure, While loop, has been used to avoid these explicit recur-
sive calls. Because of the specialty of While loops, a library routine has been written
to realize iterations of While loops.

PROOF/L format:
while(<predicate lambda exps>, <body lambda exps>)

<an input to lambda>

Translated C format:

result = <an input to lambda>;

while (1) {

if (<predicate lambda exps> (result)) {
result = (<body lambda exps> (result);

} else {
break;

}

return result;

Our own PROOF/L library routines for supporting functional operations have been
provided. They include all the built-in functions (except parallel delta function),
copy routines, and garbage collections routines. Besides all these routines, packet
assembling and disassembling routines have been written for message-passing type
communications in all the three target languages, which will be described later.

The broad translation for a class is described as follows:

IF1 PVM/Sun C
C Class <name> /*. Class <name> begins */
C Class Composition /* Class composition */

64

C Class Methods /* Methods <Class_name.Method_
name 1>
begins */
G <Type_id> <Class_name.Method_name 1> void <Class_name.Method_name 1>
(<1/0 Type>) A

} /* End of method */

C Class Methods /* Method <Class_name.Method._
name k>
beings */
G <Type_id> <Class_name.Method_name k> void <Class_name.Method_name k>
(<I/0 Type>) A

} /* End of method */

end Class /* Class ends <name> */
C Extra procedures for every class /* class-method lookup table
begins */

~ void <name>_func_dispatcher (){
/* Lookup Table */

/* class-method lookup table
ends */

The broad translation for an object is described as follows:

IF1 PVM/Sun C
/* Declaration #*/
X 0 <Class_name.Object_name> SExp *<object_namename>;
C nodes(Simple or Compound), edges /* Object <Class_name.Object_

name> begins */
void <Class_name_Object_name>()

{ ...}

6.3.4 Clustering and Dynamic Allocation Support

In PROOF/L, any application is a group of objects. Every object is an independent
process. Some objects are allocated on the same node because clustering restriction
or work load balancing while the others may be on different nodes. They all run the
same program and this program will determine which object it should act as. In the

65

runtime model of the translators for NCube and KSR, there is no starting object.
Every CPU has a physical serial number which is used to determine the which objects
should be run on it. In order to assign processes to objects on a workstation cluster,
a starting object is generated automatically by the translator besides the PROOF /L
program. The activity of this starting object is shown in Figure 6.3. All the objects
that are defined in PROOF/L program are spawn by the starting object. Then, an
array that contents all these PVM process IDs is broadcasted from starting object.
After receiving this array, each process can determine the index number in this array
which is used as the number of objects, and send back ACKnowledge message to the
starting object. When all the ACK is returned, the starting object is terminated,
so no more overhead is added to the computing network while those objects start

working.

Terminated

Starting Object _—}
~..Sp 11 oth ts/pr
- £ A oo TS BRI oS

put process [D

Global TIDs

ack)
“~_ Global fTDs ACR
— Global TIDs
Buffer (O3)
------ > ACK

Figure 6.3: The activity of the starting object

The program initialization method is included in Object Oy. All the methods in both
active and passive objects can be invoked by this initialization method. Before Op
terminates, a synchronization message will be broadcasted to the rest objects.

Upon receiving the synchronization message, the objects start to execute their body
methods. For active objects, their bodies are defined by user’s program. They will
not offer services (allow its methods be called) to other objects anymore. For passive
objects, their bodies are defined by the translator as a service loop. Its function is
to receive function call requests, call the corresponding methods and send the results

back.

This workstation cluster back-end translator supports all the previous PROOF /L
features. It also supports object clustering and dynamic allocation.

From the our OOA/OOD CASE tool, the user can get the clustering information
in the format of a file with object name list each line for each cluster. When the
translator compile PROOF /L source code, it also reads in thls clustering 1nformat10n

66

and translates the object names to internal object ID array. This array will be defined
as constant in target language code and will be used by the running-time object
allocation algorithm described in previous section.

In order to run the allocation dynamically, this function code has to be executed at
the system initiating period. The starting object we add into the system satisfies
this requirement. The advantage of using starting object as allocation host is that
the allocation function code can directly be pre-programmed and no compiling time
generation is needed. This makes the allocation code more neat and efficient.

6.3.5 Output File Organization

In order to modularize the entire translated target C code, four basic files are generated
after the translation:

e class.h contains all the object declarations and all the necessary C “include”
files. All class method prototypes and class initialization function prototypes are
also listed here. This is the main header file for the entire translated C code. .

e methods.c contains all the class methods, bounded by comment marks for each
class. It also contains class-method lookup tables for the purpose of communi-
cations among different objects.

e objects.c contains bodies of all the objects.

e main.c provides the initialization of all the available physical nodes, and asso-
ciate each object body with a process in PVM (a single node in the nCube C
and a thread for each object body in the KSR C), dispatch all the corresponding
controls to object bodies, synchronize all the objects to start execution simulta-
neously, and finally do the cleanup when all the objects are terminated.

The main.c is given as follows:

initialize all the objects;
initialize all threads or nodes;

switch(<Thread ID>) {

case 1: <Objectl_func>();
break;
case 2: <0bject2_func>();
break;
case 3: <Object3_func>();
break;
case 4: <Object4_func>();

" break;
case 5: <Object5_func>();
break;

67

}

synchronize all threads to start at the same time;

wait for terminations of all threads.

All the classes and objects are translated based upon the structures shown above,
and corresponding portions of code are put into the header file or different .c files to
modularize the problem. The entire set of .c and .h files will be put into a directory
according to what were provided. Also a general makefile for the purpose of translation

of target C code is given.

6.3.6 Distributed Method Invoke and Building Parallel Functions

As mentioned in Section 6.1, distributed-memory parallel machines, like the work-
station cluster or nCube, need to explicitly specify communications among different
physically separated nodes. On the other hand, shared-memory parallel machines, like
the KSR, provide communications among different nodes at the kernel level, which
releases this task from the programmers. Our translators for workstation cluster and
nCube emulate communications for the shared-memory KSR machine in order to pro-
vide the unique structures to translate the IF'1 code for three different target languages

with as few variations as possible.

All the concurrent objects in PROOF/L that can be executed in parallel are dis-
patched to different threads or nodes. Each object is a computation unit of its
own. The guard statements in methods are used to handle synchronization among
PROOF /L objects executed on different nodes or threads.

Periodic communications among different threads or nodes are made under two con-
ditions: 1) call methods of other objects, and 2) applications of the parallel functions:
alpha, beta, and delta.

Condition 1) is for the purpose of method invocations between two different objects.
The reasons for one object to invoke another object’s method are query for the state
information of another object, and change of the state of another object through the
reception function (this is the only way to modify the state of an object).

The scheme for this kind of communication is shown in Figure 6.4. A request object
sends the method id to indicate which method it wants to call to a responder object,
assembles all the arguments necessary to that method, except state information of
the responder object, into a stream packet, and then sends the packet through the
network. After the method id received, the responder object dispatches the stream
packet of arguments to the method that was requested. Arguments get extracted from
the stream packet and passed to the method associated with the state information
of the responder object. The final outputs of the method are assembled again into a
stream packet and passed back to the request object which in turn will disassemble
the returned packet to get the results it expects. Overheads for assembling and

68

disassembling are necessary for providing a unique and simple interaction between
two different objects, and they are much less time-consuming than communication
overheads across two different processors. Another reason for us to assemble all the
arguments together and send once across two nodes is that multiple communications
with small packets are more time-consuming than a single communication with a large

packet.

Method ID —— Ml
Request | _Packetof Args | Responder
. . Lookup Table * 00
Ob.] ect Packet of ObJeCt
Outputs , L Mk
Figure 6.4: The underlying PROOF /L communication scheme
The code skeleton for a class-method lookup table is shown as follows:
/* message comes in */
switch (method_id) {
case 1:
nethod 1 set up; /* receive argument packets and
' disassemble */
Call method 1;
method 1 feedback; /* assemble final results */
break;
case 2:
}

Class-method lookup tables are required for the distributed-memory nCube machine.
On the other hand, an object on the shared-memory KSR machine does not need to
explicitly pass messages over to other objects because they can call another object’s
method directly due to the fact that all objects shared their state information with
others, while objects on the nCube machine own their state information themselves.
But, the sequence for calling methods is still the same, including assembling and
disassembling arguments to methods.

Deadlock is entirely avoided. Each object controls its own thread by executing its
body. The loose-coupled relations among objects are well maintained by all the
GUARD statements within methods of each object. Objects are ready to serve other
objects’ requests when they enter unsatisfied GUARD statements.

Bottlenecks in the PROOF /L for a program normally are writable objects. When

69

many objects want to invoke methods of writable objects, the program’s execution
pace slow down considerably.

Condition 2) is to execute a single function with multiple ranges of data in parallel
(alpha, apply to all or delta, data partition) or multiple functions with their own
data ranges in parallel (beta, distribute apply). The translator for workstation cluster
can execute all the built-in functions and all the global functions in parallel.

Same reasons as the condition 1) are applied here for our assembling arguments to
methods before calls and disassembling stream packets to extract results after methods

finish executions.

e alpha function

PROOF/L format: alpha <method> ([args 1], [args 21, ...)

target C format: assemble args 1;
launch a process to call method;

assemble args 2;
launch a process to call method;

wait for return packet 1;
disassemble packet 1;
wait for return packet 2;
disassemble packet 2;

build all return results into a list.

e beta function

PROOF/L format: beta (method 1, method 2, ...) ([args 1],
largs 2], ...)

target C format: assemble args 1;
launch a process to call method 1i;

assemble args 2;
launch a process to call method 2;

wait for return packet 1;
~ disassemble packet 1;

wait for return packet 2;

disassemble packet 2;

build all return results into a list.

e delta function

PROOF/L format: delta <method> ([low_bound], [upp_boundl,
<rest args> ...)
target C format: assemble all args: low_bound, upp.bound,

70

rest args ...;
get N=the number of available computing nodes
launch N method processes;

/* Depending on physical capacity,
launch processes as many as possible */

wait for return packet 1;
disassemble packet 1;
wait for return packet 2;
disassemble packet;

build all return results into a list.
/* Dimension undermined */

71

Chapter 7

Examples

In this chapter, we present two examples for illustrating our approach. The first ex-
ample is an ATM system adopted from [12], and the second example is the Air Force

Defense System used in [8].

7.1 The ATM System Example

We will use a hypothetical Automated Tellar Machine (ATM) example to demonstrate
our approach involving both coarse grain and fine grain parallelism. In this example,
we focus on both communication and computation aspects.

7.1.1 Specifications of A Hypothetical ATM System

Supposed that we are requested to develop an ATM system, whose requirement spec-
ification is as follows: '

Design a system to support a computerized banking network including both
human cashiers and automatic teller machines(ATMs) to be shared by a
consortium of banks. Each bank provides its own computer to maintain its
own accounts and process transactions against them. Cashier stations are
owned by individual banks and communicate directly with their own bank’s
computers. Human cashiers enter account and transaction data. Automatic
teller machines communicate with a central computer which clears transac-
tions with the appropriate banks. An automatic teller machine accepts a
cash card, interacts with the user, communicates with the central system to
carry out the transaction, dispenses cash, and prints the receipt. In order
to ensure the security of data exchanged between the ATMs and the central
computer, data must be encrypted before being sent out and decrypted after

72

Cashier

~ Station
/ Account
Bank
Computer \
Account
Central
Computer
Account
Bank
Account

/
Computer
\
]
]
®

Figure 7.1: An ATM system.

being received. The system must handle concurrent accesses to the same
account correctly. The banks will manage their own software for their own
computers. We are requested to design the configuration and communica-
tion software for the ATM and the central computer as shown in Figure 7.1.

7.1.2 Object-Oriented Analysis

1. Identifying classes and objects

Our object-oriented analysis tool can help software designer analyse problem
statement. A software designer can use the tool to identify classes/objects and
their interfaces. Figure 7.2 is a snapshot of object-oriented analysis tool.

Using our object-oriented analysis tool, we identify the following classes from the
requirement specification of the example:

e Account — A single account in a bank against which transactions can be
applied. Accounts may be of at least two types, checking and savings. A
customer can hold more than one account.

attribute: account code
balance
credit limit

73

i

't File Edit Insert Display Outputs

: cash, and prints receipts. In crder to ensure the security of data exchanged
between ATMs and the central computer, these data must be encrypted before
sending out and decrypted after receiving. The system must handle concurrent

1 accesses to the same account carrectly. The banks will provide their own software
1 for their own computers; you are to design the software far the ATMs and the

| network. The cost of the shared system will be apportioned to the banks according

| to the number of with cash acrds.
Domain knowledge:

(2) Transaction Figfiides BEER

Associations from ATM problem statement:
(1) Consartium £QRSISES OF banks
(2) Consartitm owns Central Computer
(3) Central Camputer comimunicates with Bank Computer(s)
{4) ATMs communicate with Central Camputer
(5) Bank owns Bank Computer
(6 Bank holds Accounts
(7) Bank employee Cashier(s)

Figure 7.2: The object analysis result of the ATM system example using our OOA tool.

74

password
type

e ATM — A station that allows customers to enter their own transactions
using cash cards as identification. The ATM interacts with the customer
to gather transaction information, sends the transaction information to the
central computer for validation and processing, and dispenses cash to the
user. We assume that an ATM is always connected to the network system.

attribute: station code
cash available on this station
dispensed

e Bank — A financial institution that holds accounts for customers and that
issues cash cards authorizing access to accounts over the ATM network.

attribute: bank code
name

e Consortium — An organization of banks that commissions and operates the
ATM network. The network only handles transactions for banks in the con-
sortium.

e Bank computer — The computer owned by a bank that interfaces with the
ATM network and the bank’s own cashier stations. A bank may actually
have its own internal network of computers to process accounts, but we are
only concerned with the one that connects to the network system.

attribute: bank code

e Cash card — A card assigned to a bank customer that authorizes access of
accounts using an ATM machine. Each card contains a bank code and a card
number, most likely coded in accordance with national standards on credit
cards and cash cards. The bank code uniquely identifies the bank within
the consortium. The card number determines the account that the card can
access. A card does not necessarily access all of a customer’s accounts. Each
cash card is owned by a single customer family, but multiple copies of it may
exist, so the possibility of simultaneous use of the same card from different
machines must be considered.

attribute: card code

e Cashier — An employee of a bank who is authorized to enter transactions
into cashier stations, accept cash and checks from customers, and dispense
cash to customers. Transactions, cash, and checks handled by each cashier

must be logged and properly accounted for.

75

attribute: employee code
name

o Cashier station — A station on which cashiers enter transactions for cus-
tomers. Cashiers dispense and accept cash and checks; the station prints
receipts. The cashier station communicates with the bank computer to val-
idate and process the transactions.

attribute: station code

o Cashier Transaction — A subclass of "Transaction’. It is entered by cashier
through Cashier Station. '

e Central computer — A computer operated by the consortium which dis-
patches transactions between the ATMs and the bank computers. The cen-
tral computer validates bank codes, but does not process transactions di-

rectly.

e Customer — The holder of one or more accounts in a bank. A customer can
consist of one or more persons or corporations. The same person holding an
account at a different bank is considered a different customer.

attribute: name
address

e Entry Station — An abstract class. It includes ATMs and Cashier Station(s).

attribute: kind

e Remote Transaction — A subclass of "Transaction’. It is entered through
ATM.

Transaction — A single request for operations on one account of a single
customer. The different operations must balance properly.

attribute: kind
date-time
amount

As in all of these classes, those we are most concerned with are account, central
computer, bank computer, customer, and account, so we identify the following

objects:

A — corresponding to a single ATM
CC — corresponding to the central computer

76

Figure 7.3: The interface for designing a class using the OOA tool.

BC — corresponding to a single bank computer
CU — corresponding to a single customer

AC — corresponding to a single account

Determing class interface

Our object-oriented analysis tool also can help software designer design the in-
terface of a class. A software designer can specify the role, attributes, methods,
and other properties of a class. Figure 7.3 is the user interface of designing a
class in our tool.

Class interface of an object consists of the input and output parameters and their
types. The class interfaces of various objects identified in the previous subsection
are given as follows:

77

class account
{ attribute : account code

method
method
method

}

balance

credit limit

password

type
get_balance(Account -> Account’ x amount)
deposit(Account x amount -> Account’ x amount’)
withdraw(Account x amount -> Account’ x amount’)

class ATM
{ attribute : station code

method
method
method
method
method
method
method
method
method
method
method
method
method
method
method
}

cash on hand

dispensed
display_main_screen(ATM -> ATM’)
apply_a_publickey(ATM -> ATM’)
request_password(ATM x card -> ATM’)
encrypt(ATM x data -> ATM’ x message)
decrypt(ATM x message -> ATM’ x data)~
verify_account(ATM x message -> ATM’)
request_transaction_kind(ATM -> ATM’)
request_transaction_amount (ATM x kind -> ATM’)
send_a_transaction(ATM x message -> ATM’ x message’)
dispense_cash(ATM x transaction_success -> ATM’ x cash)
request_take_cash(ATM -> ATM’)
request_continuvation(ATM x take_cash -> ATM’)
print_receipt(ATM x terminate -> ATM’)
eject_card(ATM -> ATM’ x card)
request_take_card(ATM -> ATM’)

class central_computer

{ method
method
method
method
method
method
method
method

}

produce_a_public_key(CC x request_a_public -> CC’ x public_key)
send_a_public_key(CC x public_key -> CC’)

encrypt(CC x data -> CC’ x message)

decrypt(CC x message -> CC’ x data)

verify_card_with_bank(CC x data -> CC’ x account_0K)
send_ATM_acoount_OK(CC x account_0K -> CC’)
send_a_transaction_to_bank(CC x data -> CC’ x transaction_OK)
send_ATM_transaction_OK(CC x transaction_OK -> CC’)

class bank_computer
{ attribute : bank code

78

Table 7.1: Object classification of the ATM system example.

| Classification | Objects |
Active CU, A
Passive AC

Pseudo-active | CC, BC

method verify_bank_account(BC x data-> BC’ x account_0K)
method send_central_computer_account_0K(BC x account_0K -> BC’)
method process_transaction(BC x data -> BC’ x transaction_OK)

method send_central_computer_transaction_0K(BC x tramsaction_0K -> BC’)

}

class customer
{ attribute : name
address
method insert_card(CU -> CU’)
method enter_password(CU -> CU’ x password)
method enter_transaction_kind(CU -> CU’ x kind)
method enter_transaction_amount(CU -> CU’ x amount)
method take_cash(CU -> CU’)
method terminate(CU -> CU’)
method take_card(CU -> CU’)

}

. Specifying Dependency and Communication Relationships Among Objects

Once the class interfaces are obtained for all the classes, we can establish the
dependency and communication relationships among the objects from the object-
oriented analysis phase. Figure 7.4 gives the dependency and communication
relationships among these objects.

. Identifying Active, Passive and Pseudo-Active Objects

From the requirements specification and from the object communication diagram
shown in Figure 7.4, we identified CU, A as active objects, CC, BC as pseudo-
active obejects, AC as passive object. These objects as shown in Table 7.1.

. Identifying Shared Objects

From the object communication diagram as well as the object behavior, we iden-
tify the object CC' as a shared object.

. Checking for Completeness and Consistency of the Object-Oriented Analysis

By tracing through the behavior of the objects and looking at the class interfaces,
we can see that the object-oriented analysis is complete and consistent.

After building the class and object hierarchy, we can apply the object clustering
algorithm to analyze the coarse grain parallelism among the objects.

79

Ppaaoons
doueieqTIed
MEIDYIIM®

ysodap’

paasons

(nonvy)
oV

ARIpYIM
usodap

usodap’

MeIpYIA

MO uonoesuen™

1omdwos™fenuas puas’

MO unoaoe”

19ndwos [enuds puss’

MO wnoae”
Indwos (U puas

MO uonousuen”
19Induwiod [esus puas

(mindwo)) yueg)
o4

Jueq o1 uonovsuEn € pusy
Nueq Yum T pres£jusa

JUBQTOITUONIOESUEII e Tpuas’
JUEQTNMTpIEoTAJUaA

MO uonsEsURH TN LY T pUss
NO T WROIIETN LY puIs

Koy ongnd e puss:

Kox~ongnd e puos
AO W0 TN LY T puas
O TUOTSUEN T LY puds

uonoEsURI B puUas’
WNOIIR AJLIIA
Aaxonqnd e 4idde:
uxsTuIRWw Aejdsip
pres eI Isonbar
proTakr
wrasarjuud:

promssed~isonbay
puiy “uonIEsues 1sonbay
unoweuonoesursiIsanbar
yseo~asuadsip
yseaayes 1sanbas
uoneaunuos_Isanbas
o und
pieoT199f31
pIed—ayer_15anbar
39108~ utew~ Aedsip

(rendwo) [enua))
20

Koy oygnd e~4jdde
JUR00T"AJ1I9A
UonoRSULI € puas

yseo oyl isanbor
ysesTasuadsip
wmowe uondesuenT1sanbar

pury-uonsesuenisanbas

promssedisanbar

3T1sanbar

(ALY)
v

pIresTuosut
promssed 1o
pup{ uonoesULNTINU
pIes~ayes
_ YseaTover_
JUROWE UONDESURII " IANUS
JBUNLIAY

preo”ayer

deuruusy

ysea~ayer
TUNOWIE UONIVSUET 33U

PUIY TUONIIESURII 1AIUD"

piomssed 10wz

pres uasur

(32woIsn))
no

ts of the ATM system

tion diagram for the set of decomposed objec

1Ca

ject communi

The ob

Figure 7.4

80

example.

Saving Checking Saving
Account Account Account

Figure 7.5: The transaction diagram for a transfer between two banks.

7.1.3 Object Clustering

Assume that a customer owns two accounts — accountl (saving account) and account2
(checking account) — in Bank One and one account — account3 (saving account) —
in Bank of America. Now he wants to transfer $500 from accountl, $300 from ac-
count? to account3. Figure 7.5 gives its transaction digram.

Figure 7.6 is the object structure before applying the clustering algorithm. The fol-
lowing is the clustering result from our tool.

Cluster #1:
“accountl"
"ATM-Rural”

"Bank One"
"Central Computer"
"Bank One Conputer"

Cluster #2:
"account2"

“"Bank of America"
"Consortium"

Cluster #3:
"account3"

"Bank of America Computer

Cluster #4:

81

Figure 7.6: The object structure before clustering.
"ATM-McClintok"

7.1.4 Public Key Algorithm

We use one of public key ciphers [39] to ensure the security of data exchanged between
ATMs and the Central Computer. Public key ciphers are asymmetric — not only the
key used for encryption differs from that used for decryption, but it is also compu-
tationally infeasible to compute one key from the other. The term computationally
infeasible implies that the computation would take a long time, even using the most

powerful computers available.

The significant point about asymmetric ciphers is that the sender and receiver do
not possess the same secret information. This asymmetric relationship can remove
the requirement for the secure channel to exchange keys. The owner of the secret
decryption key can freely distribute the associated nonsecret, or public, encryption

key.

Any person holding the public encryption key can encrypt messages and then forward
them securely to the holder of the secret decryption key. The holders of the public
key cannot decrypt messages transmitted by other users of the public key, or indeed

even their own encrypted messages.

82

Currently there are four public key ciphers in use:

e Rivest Shamir Adleman(RSA)
e Knapsack

e Discrete Log

e Elliptic Curve

The RSA cipher [40] has become the de facto standard for public key cryptography.
Here, we use RSA cipher to encrypt and decrypt our data. The security of this
algorithm lies in the difficulty of factoring large primes.

The steps in key generation, encryption and decryption are summarized for the sake
of completeness [39].

e Key Generation:

— Select any two large (e.g. 100-digit), unequal prime numbers, p and g;
— Compute r = p X g;
— Compute ¢(r) = (p — 1)(g — 1);

— Select any integer d such that d lies between the maximum ¢(p,q) and r —1
exclusively; moreover ensure that d and ¢(r) have no common factors;

— Find e = d!(modulo ¢(r))

— Publish the public encryption key (k, = €) and n, a parameter used in the
encryption algorithm, while strictly maintaining the secrecy of the decryption
key ks(= d) and the numbers p,g which are used in computing of d and e.

e Encryption:

— Represent the original message in binary arithmetic and divide it into blocks
such that the bit-string of the message blocks F;’s can be viewed as a 200-
digit numbers.

— The encrypted block C; of P; can be computed from the plaintext number
P, by:

C; = Pf(modulo 7).
e Decryption:
— The original message F; is recovered by computing:

C¢ = P,(modulo 7).

For example, Alice wants to send some data to Bob by using the public key system.
Alice selects p = 53 and ¢ = 61 giving r = pg = 3233 and ¢(r) = (p—1)}(¢—1) = 3120.
Alices selects d = 791, hence e = 71, (de = 791 * 71 = 56161 = 18 * 3120 + 1 =

83

1 modulo 3120). Alice publishes modulus r = 3233 and public key (k,), e = 71,
maintaining the secrecy of (k;)d = 791. Bob selects the message 1800 and encrypts

1t:

1800 = 2691 modulo 3233.
Bob transmits the ciphertext block 2691 to Alice who decrypts it using her private
decryption key 791:

26917°! = 1800 modulo 3233.

The key generation stage is computationally demanding. In addition, the steps in
the key generation algorithm depend on the modular arithmetic operations involved
in computing inverses and large exponents. Since the key generating operation is
encapsulated inside the object “central computer”, the operation is a good candidate
for us to analyze fine grain parallelism.

For every transaction session, Central Computer computes a public key and both
Central Computer and the associated ATM use this key to encrypt and decrypt the
data. When next transaction comes, Central Computer will produce another public
key for that session. Under this circumstance, we do not need to compute two huge
primes with 200 digits long, and instead only need to compute two primes between
10000 and 65535 exclusively for this example.

7.1.5 Dynamic Behavior Analysis

The event trace diagram for the ATM system example is given in Figure 7.7.

With the event trace diagram, state transition description and the method description
in the OOA result of the ATM example, we apply the dynamic behavior analyzing
method decribed in Chapter 5 and find the following four pairs of objects which can

be invoked concurrently:

e Customer, Central_Computer;
e ATM, Customer;
e Bank_America_Computer, Bank_One_Computer;

e Acountl, Acount2.

These analysis results can then be used in our object clustering algorithm.

7.2 The Air Force Defense System Example

We also use the hypothetical air force base defense system given in [8] to demonstrate
our approach involving both coarse grain and fine grain parallelism. In this example,

84

Customer ATM cCentral_Computer Bank_One_Computer Bank_America_Computer

Acountl Acount2 Acount3
insert_card . .
: : send_public_key
; request_passward :
enter_password :
! verify_account . .
: * verify_card_with_bank :
: i acount_ok
' send_atm_acount_ok :
request_kind i
¢ enter _trasaction_kind
: request_transaction_amount :
enter_transaction_amount
send_a_transaction : H
: send_a_transaction_to_bank
H withdraw
succeed
withdraw
: succeed
.send_a_transacnon__to_ba.nk : deposit
; : : ;
i succeed |

:send ATM transaction ok : send_central_computer_{ransaction_ok

dispense_cash

request_take_cash
take_cash
¢ request_continuation

: terminate
. print_receipt

reject_card H
{ request_take_card :
i take_card :

! display. main_screen

Figure 7.7: The event trace diagram for the transfer scenario of the ATM system example.

85

communication and synchronization aspects among air force bases were emphasized
(coarse-grain parallelism). Here, we will focus on one of the bases and emphasize both

communication and computation aspects.

7.2.1 Specifications of a Hypothetical Air Force Base Defense System

Assume that there are three air force bases that are closely connected. For the sake
of simplicity, we assume that only one type of fighters, one type of bombers, one type
of surface-to-air missile batteries for defensive purposes against the attacking enemy.
Radars and C3 (Command, Control and Communication) facilities are available. Each
base may have many radars, but the base gets only one correlated radar value. Each
base will have several missile batteries and sufficient missiles to be used for its defense.
Each base has either fighters or missiles for the defense. There would be one central
C3I unit which advises each base as to what it should do for its defense. In our
application, we will associate the C3I advice for a base along with the design of the
base itself since this is a parallel processing system. This way, the commander at the
center can know what is going on at different bases simultaneously and will also be
able to give orders to different bases simultaneously.

For the example considered here, we will characterize one of the bases and emphasize
more computation aspect on that base. The detailed description is as follows:

An air force base consists of radar installations, equipment, and armed personnel. The
radar detects approaching hostile attacks on the base. It is assumed that the enemy
cluster consists of either bombers or missiles, but not a combination of the two. The
base, in turn, can use its fighters or its missiles, but not a combination of the two
simultaneously for its defense. The defense strategy used by the base depends on the

configuration of the enemy cluster.

Upon detection of an enemy cluster, the radar tracks the cluster to determine its
composition. This enemy information, which is the number of bombers or missiles
of each enemy cluster, is stored in a queue. The air force base retrieves the enemy

information from the queue.

If the enemy cluster consists of z bombers, the base defends itself by launching either
its fighters [represented by the computation of the function F(z)] or its missiles [rep-
resented by the computation of the function G(z)]. On the other hand, if the enemy
cluster consists of y missiles, the base defends itself by launching its own missiles to
intercept the incoming missiles [represented by the computation of the function H(y)].

In our implementation, we use a random number generator to simulate various in-
coming threats. For simplicity purpose, we assume that

F(z) = iz iel | (7.1)

86

1& 40 (i—0.5)

G(m)—w~;;10+xzz,xi=———$, tel, : (7.2)
H(y) = {21, 22, 23, ...}, z:e{Prime numbers}, 1 <z <y (7.3)

Each of the defense strategies [the computation of F(z), G(z) and H(y)], and the radar
will be executed in parallel on independent nodes to exploit coarse grain parallelism.
Threats are added to a FIFO queue. The air force base removes a threat from the
FIFO queue and computes either F(z), G(z) or H(y) depending on the type of the
threat.

Each of the defense strategies is executed on multiple processors to exploit fine grain -
parallelism. It does so by breaking down its task into smaller tasks which can then
be executed in parallel on independent nodes. The results of these smaller tasks are
then gathered together to yield the final result.

7.2.2 Object-Oriented Analysis

1. Identifying Classes and Objects

We identify the following Classes from the requirement specification of the ex-
ample:

e Base — for air force base
e Radar — for radar associated with Base.
e Queue - for FIFO queue.

From the requirement specification, we identify the following objects:

e B - corresponding to a single air force base.
e R — corresponding to the radar associated with the single air force base.

e QQ — for recording enemy cluster information.

2. Defining Class Interfaces

Class interface of an object consists of the input and output parameters and
their types. The class interfaces of the various objects identified in Section 7.2.1
are given at the end of this paragraph. As an example, let us consider the class
Queue. We show one interface which is called method Insert. This method is
invoked by the body of object R. From the domain knowledge of the example,
we can infer that the radar value consists of the number of bombers or missiles
attacking the base. The type of data is obviously integer. In a similar fashion, the
class interfaces for the various classes can be determined. In order to illustrate
the usage of global methods, the class interfaces for the classes Base and Radar
consists of global methods, not class specific methods. The reason for using

87

the global methods is that the computation, such as random number generator,
finding prime numbers, 7 approximation, factorial summation, are all general
operations which do not belong to any specific class. All class interfaces of this

example are
class Queu
method
method
method
method
method
end class
class Base
method
method

method

method
method

method
method

end class

given below:

e

Q_init(s:int -> Queue)
Insert (-> Queue)

Assign (New:list -> Queue)
Delete (-> Queue)

GetElem(-> int)

IsPrime(number:int, factor:int -> int)
Prime (number:int -> int)
FindPrimes(low:int, upp:int, number:int -> int)

IntegerSum(l:1list -> int)
FactSum(low:int, upp:int -> int)

RealSum(1l:1ist -> real)
Pi(1l:int, h:int, interval:int -> real)

class Radar

method

end class

Random(low:int, upp:int, number:int -> int)

where Random, IsPrime, Prime, FindPrimes, IntegerSum, FactorialSum, RealSum,
and Pi are global methods and do not belong to any specific class.

. Specifying Dependency and Communication Relationships Among Objects

Once the cl
dependency

ass interfaces are obtained for all the classes, we can establish the
and communication relationships among the objects from the object-

oriented analysis phase. Figure 7.8 gives the dependency and communication

88

) B
Q
: FindPrlmes*
Q.Init Q.GetElem | Prime
Q.Insert Q.Delete Q.Delete IsPrime
Q.Insert "
FactSum
Q.GetElem IntegerSum”
— .
Pi*
3
RealSum
* A global function
GLOBAL FUNCTIONS:
Random FindPrimes Prime IsPrime
FactSum IntegerSum Pi RealSum

Figure 7.8: The object communication diagram for the set of decomposed objects of the hypothetical
air force base defense example.

Table 7.2: Object classification of the hypothetical air force base defense example.

[Classification | Objects |
Active R, B
Passive Q

Pseudo-active | None

relationships among these objects. To illustrate the operation, let us consider
the object R, which puts a radar value into the object Q). Thus, there exists
communication between R and Q.

4. Identifying Active, Passive and Pseudo-Active Objects

From the requirement specification and from the object communication diagram
shown in Figure 7.8, we notice that the object R is not invoked by other objects,
but does invoke other objects such as @. Thus, R is identified as an active
object. To illustrate the methods for identifying passive objects, let us consider
the communication behavior of the object @, which is invoked by other objects
such as R and B, but never invokes any other objects. Such objects are classified
as passive objects. If the communication behavior shows an object being invoked
by other objects as well as invoking other objects, it is identified as pseudo-active
object. Figure 7.8 shows no such object. Thus, we have no pseudo-active objects
in this example. We can classify the objects as shown in Table 7.2.

5. Identifying Shared Objects

89

From the object communication diagram as well as the object behavior, we iden-
tify the object @ as a shared writable object. Shared writable objects are usually

passive objects.

6. Specifying the Behavior of Each Object

We are now in a position to describe the behavior of each object. For instance, let
us consider the object R. The object R adds threats to a FIFO queue endlessly.
Thus, we have the behavior of the object R. The behavior of each object is given

below:
Behavior of object R:

while (TRUE,
(Q.Insert))

Behavior of object B:

while (TRUE,
let low 1 in
let upp = 10001 in
let third = (/ (- upp low) 3) in
let target = (Q.GetElem) in
Q.Delete,
if ((null? target),
THEN do nothing because no threat to base
ELSE respond to threats
if ((<= target third),
THEN-clause
(FindPrimes, 1, target)
ELSE-clause
if ((and (> target third) (<= target (* 2 third))),
- # THEN-clause
(FactorialSum, 0, target),
ELSE-clause
(Pi, 1, target, (- target 1))

))))

7. Identifying Bottleneck Objects
We have identified the object @ as a shared writable object. Since different
methods of this object are used by the objects R and B to access this object,
the access to the object @ does not have to be serialized. Hence,) is not a
bottleneck object. Thus, we do not have any bottleneck objects in this example.

8. Checking for Completeness and Consistency of the Object—Oriented Analysis

Because of the similariity of the example, by tracing through the behavior of the
objects and looking at the class interfaces, we can see that the object-oriented

analysis is complete and consistent.

90

7.2.3 Object Design

1. Establishing Hierarchy

Since in this example we do not have two different types of objects with common
behavior, we do not need to define a superclass. In other words, we do not have

any inheritance in this example.

2. Designing Class Composition and Methods

The class composition typically consists of local data present in the class. The
type of data present in the class is also identified. In this stage, we also provide
the methods present in each of the classes. As an example, consider the class
composition of the class Queue. The data in the object is a list of integers
generated by the global method Random and two integers. These constitute the
class composition. In addition to these, we define the methods. The methods

required for the class Queue are as follows:

(a) Initialize the integers in the composition.

(b) Add integers to the list TargetsQ in the composition.

(c) Modify the list TargetsQ in the composition.

(d) Delete the integers from the list TargetsQ in the composition.

These are defined as follow:

Class Queue

composition
TargetsQ : list
seed : int
number : int

end composition

method Q_init(s:int -> Queue)
expression
object Queue (seed = s, number = 0)

method Insert (-> Queue)

expression
let low =1 in
let upp = 10001 in

let item = (Random low upp seed) in
object Queue (TargetsQ = (append_right TargetsQ item),
seed = item)

91

method Assign .(New:list -> Queue)
expression

object Queue (TargetsQ = New)
method Delete (-> Queue)
#guard (> number 0)
expression
object Queue (TargetsQ = (tail TargetsQ),
seed = seed)

method GetElem(-> int)
#guard (> number 0)
expression
(head TargetsQ)

end class

global

method Random (low:int, upp:int, number:int -> int)
expression
let factor = (- (/ (+ low upp) 2) 13) in
let x = (mod (* factor number) upp) in
if ((and (and (>= x low) (<= x upp)) (> x 0)),
(+ x 0),
(Random low upp x))

method IsPrime(number:int, factor:int -> int)

expression
if ((<= (* factor factor) number),
if ((= (mod number factor) 0),
0,
(IsPrime number (inc factor))),

1)

method Prime(number:int -> int)

expression o

-if ((or (= number 2) (= number 3)),
1, . . .

if ((= (IsPrime number 2) 1),

1,

92

0))

method FindPrimes(low:int, number:int -> list)
expression
(head while (lambda (x) (> (head (tail x))
(head (tail (tail x)))),
lambda (x) (
let y = (head (tail x)) in
let z = (head (tail (tail x))) in
if ((= (Prime y) 1),
[(append_right (head x) y)
-yvnzl,
[(head x) (-y 1) z 1))
) [[J number low])

method IntegerSum(l:list -> int)
expression
if ((aull? 1),
0,
(+ (head 1) (IntegerSum (tail 1))))

method FactSum(low:int, upp : int -> int)
expression
(head while (lambda(x) (< (head (tail x))
(head (tail (tail x)))),
lambda(x)
let y = (head (tail (tail x))) in
[(+ (head x) y) (head (tail x))
-y D]
) [0 lowupp 1)

method RealSum(l:list —-> real)
expression
if ((qull? 1),
0,
(+ (head 1) (RealSum (tail 1))))

method Pi(l : int, h : int, interval : int -> real)
expression
(head while(lambda(x) (< (head (tail x))
(head (tail (tail x)))),

93

lambda(x) -
let w = (/ 1.0 (head (tail
(tail (tail
x))))) in

let t = (¥ (- (head (tail x)) 0.5) w) in
let tmp = (/ 4.0 (+ 1.0 (* t t))) in
[(+ tmp (head x)) (+ 1 (head (tail x)))

(head (tail (tail x)))

(head (tail (tail (tail x))))]
) [01h interval])

end global

. Designing the Body of the Objects

The body of an object describes the control thread within the body. A control
thread exists for only active and pseudo-active objects. Thus, the bodies exist
for only active and pseudo-active objects. In our example, the bodies exist for
the objects R and B since these objects have been identified previously as active
objects. The behavior of the active objects should describe the body of that
object. For example, the object R has a body which iteratively executes in
accordance with its behavior specified before. In the following, we give the body

of the active object.
Body of object R:

while (TRUE,
; (
R[lI Q 1] (Q.Insert),
(delay 1)
)

Body of object B:

while (TRUE,
; (
let low = 1 in
let upp = 10001 in

let third = (/ (- upp low) 3) in
let target = (Q.GetElem) in
¢
R[l @ |1 (Q.Delete),
if ((null? target),
do nothing because no threat to base
(delay 2),
5 (
respond to threats
if ((<= target third),

94

:(R[l B I] object Base (result =
(delta (FindPrimes, 1, target)))),
if ((and (> target third)
(<= target (* 2 third))),
;(R[I B |] object Base
(result = [(IntegerSum
(delta (FactSum, 0, target)))])),
:(R[l B |I] object Base
(result = (/ (RealSum
(delta (Pi, 1, target, (- target 1))))
(- target 1))))
))
))
)))

95

Chapter 8
Discussion

In this project, we have completed the following tasks:

e Investigation on object identification methods

e Development of object-oriented analysis tool

e Development of communication estimation and object clustering tool

e Investigation on parallelism analysis

e Design and implementation of the back-end translator on cluster of workstation.

While existing approaches focus on developing software for scientific computation, our
approach is suitable for general large-scale software development for parallel processing
systems. Our approach is architecture-independent, and thus the programmers are
free from explicitly specifying synchronization and communication. The graphical
user interfaces of our tools can help software developer capture the overall pictures of
the class/object hierarchy, design and modify class/object interactively.

Our approach exploits coarse grain parallelism by deriving all the concurrent objects
from a problem and classifying them into different categories: active, pseudo active
or passive. Our approach can easily be applied to general communication-oriented
problems in which a number of objects need to be executed simultaneously, and these
objects interact with one another periodically. It has been applied to software devel-
opment for distributed computing systems [6]. The ATM system and air force base de-
fense example in Chapter 7 are two communication-oriented and computation-oriented
applications. The synchronization among different objects, such as the radars and the
bases, has been realized by using guard structures within object methods. Method
invocations fulfill communication among different objects.

Our approach exploits fine grain parallelisms at the method level. Parallel functions
specify data or functional parallelisms in a method. It is suitable for computation-
~ oriented applications, such as the ATM system example, where we embed all the com-

96

putations inside the Central Computer object’s methods and distribute these compu-
tations on different nodes. Table 8.1 shows the average execution time of each trans-
action from the 100-transaction loop in the ATM system example. The corresponding
speed-up curves are shown in Figure 8.1. It is noted that these curves approach very
closely to the ideal speed-up line when the width of public key is increasing. Table
8.2 shows the execution time for the air force base defense example in 100 itera-
tions (the program itself goes infinitely) using nCube C directly. Table 8.3 shows the
same application using PROOF /L run on the nCube through the PROOF/L back-end
translator. The corresponding PROOF/L code running on our 8-workstation cluster
is shown in Table 8.4. The time scale is in seconds. (All the examples use the same
PROOF /L source code. The execution time data on nCube are from last project.)

In order to make our approach more practical, we need to improve our approach in
the following aspects:

e Conforming to standards: Standardize the object-oriented analysis and design
results.
Our user interface specification language can capture most of object-oriented
features in the specification, but it lacks the ability to interoperate with other
languages. There are two ways to overcome this problem. We can transform
the object-oriented result to some well recognized representation such as Unified
Modeling Language (UML, follow the link “http://www.rational.com/uml” for
details).

e Fully implementation of the CASE tools: Since we have only built prototype
tools for the project, the CASE tools should be fully developed and tested for

practical use.

— Semantic analysis tool. This tool currently does not support diagram draw-
ing and graphical representation output. Future version should include this
feature and be more user-friendly. Furthermore, we should base our concur-
recy identification, design implementation on UML, which will facilitate our
approach and tool to be adopted for other environments.

— Concurrency identification tool. We will extend this tool with a GUI to let
the user graphically view the analysis result. We can also extend our basic
model to include both sychronous and asynchronous object communication.

— Communication estimation and object clustering tool. Currently, the only
output device for this tool is the screen. We can extend our output functions
to produce graphical files, e.g., postscript file, and print the object hierarchy
and clustering result directly on printers or plotters.

e Extension to distributed computing systems: Currently, our approach is designed
for software development for parallel processing systems, but it can be extended
for distributed computing systems. To reduce the development effort and increase
the interoperability, we should adopt some standards, like CORBA or Active X,
and refine the load balancing algorithm.

97

" Table 8.1: The average time of one transaction from 100 transactions loop (in seconds) in the ATM
system example programmed in PROOF /L and translated to PVM/Sun C using different numbers

of workstations.
Number of Workstations
DigitsofKey [1 | 2 [3 [4 [5] 6 | 7 | 8
4 2.86 1.55 123 | 1.19 | 1.25 | 1.27 | 1.27 | 1.28
5 23.00 | 12.01 | 810 | 6.20 | 6.00 | 5.00 | 4.00 { 4.00
6 215.00 | 108.32 | 75.50 | 56.09 | 45.45 | 38.00 | 33.66 | 29.21

Table 8.2: The execution time of the hypothetical air force base defense example programmed directly

in nCube C using different numbers of nodes.

[Num of Nodes Used | Air Force base defense (sec)
4 639.89
8 417.47
16 : 254.26
33 150.67
64 115.05

Table 8.3: The execution time of the hypothetical air force base defense example programmed in
PROOF/L and then translated to nCube C using different numbers of nodes.

[Num of Nodes Used [Air Force base defense (sec) |

4 1135.68
8 592.25
16 -385.73
32 314.15
64 240.98

Table 8.4: The execution time of 100 iteration of the hypothetical air force base defense example
programmed in PROOF/L and then translated to PVM/Sun C using different numbers of nodes
(Sun workstations).

[Num of Nodes Used | Air Force base defense (sec) |
1 218.68
109.25
57.73
-39.15
29.98

OO Oy o] DO 14—

98

e fl@EH
—%— 4 digits

—— 5 digits

—»— 6 digits

Number of Workstations

Figure 8.1: Speedup using various numbers of workstations to simulate ATM system in PROOF/L.

99

Appendix A

The User Interface Description

Language Used in our
Object-Oriented Analysis Tool

The following are the formal syntax and semantics for the user interface description
language used in our object-oriented analysis tool.

A.1 The Syntactic Definition

UIDL -> TEXT | "<UIDL>" ENTITYLIST EXTRA "</UIDL>"
EXTRA -> "<extra>" ENTITYLIST "</extra>"

ENTITYLIST -> ENTITY ENTITYLIST | ENTITY

ENTITY -> CLASS | OBJECT | ATTRIBUTE | METHOD | ASSOCIATION |
AGGREGATION | INHERITANCE | EVENT | TEXT | COMMENT

CLASS -> "“<class>" NAME ID CRQLE PERSISTENCE DESC "</class>"

OBJECT -> '"<object>" NAME ID OROLE PERSISTENCE PARAMS DESC "</object>"
ATTRIBUTE -> "<attr> NAME ID TYPE DESC "</attr>"

METHOD ~-> "<method>" NAME ID PARAMS ID DESC </method>

ASSOCIATION -> "<assoc>" NAME ID ID "(" CARD ")" ID DESC "</assoc>"

AGGREGATION -> "<aggre>" NAME ID ID DESC "</aggre>"

100

EVENT -> "<event>" NAME ID ID COUNT DESC "</event>"
STATE -> "<state>" NAME ID ID DESC "</state>"
INHERITANCE -> "<inhe>" IDLIST ":" ID "</inhe>"
PARAMS -> "(" PARAMLIST ")" | "(* ")* |
PARAMLIST -> PARAMLIST ";" PARAM | PARAM

PARAM -> TEXT ":" TYPE

CARD -> ID ":" ID

IDLIST -> ID | IDLIST ID

CROLE -> "actor" | "agent" | "server"

PERSISTENCE -> "transient" | "persistent"

OROLE -> "active" | "pseudo-active" | "passive"
TYPE -> "int" | "real" | "string" | "list" | "array" | ID |
COMMENT -> "<!* TEXT ">"

NAME -> QSTRING

DESC —-> QSTRING

QSTRING -> "\"" TEXT "\""

TEXT -> ALPHADIGIT*

COUNT -> DIGIT*

ID -> DIGIT+

ALPHADIGIT -> all the ascii symbols except "< ">! "iw UM\® ¥
. | n\<n I ||\>n l ll\!ll | I|\\ll l II\:Il

DIGIT -> 0]1]213141516171819

PUNC -> [.,!7]

101

ws -> [\t 1=

NL -> [\n]=*

A.2 The Semantic Description

Each entity in terms of class, object, attribute, method, association, aggregation,
inheritance, event, and state has the following semantic meaning:

a). Classs:
<class> name : id : role (actor, agent, server) : persistence

(transient, persistent) : description </class>

b). Class instantiation:
<object> name : id : class id : role (active, pseudo-active,
passive) : (instantiated parameters) : description </object>

c). Attribute:
<attr> name : id : class id : type : description </attr>

d) . Method:
<method > name : id : class id : (parameters <arg : type>,*)

description </method>

e). Association:
<assoc> name : id : source class id : destination class id :

cardinality : persistence (if cardinality is n:m)
description </assoc>

f). Aggregation:
<aggre> name : id : type class id : container class id :

description </aggre>
Aggregations can be viewed as special attributes of the container

class or an individual class.

g) . Inheritance:
<inhe> (subclass id ,)* subclass id : superclass id : name : id :

description </inhe>
It only can be presented after subclass and superclass have
been defined.

h). Event:
<event> name : id : source class id : destination class id :

sequence : description </event>

102

i). State: :
<state> name : id : class id : description < /state>

j). Plain text: text

k). <extra> entity list </extra> to denote any object-oriented terms not
included in the problem statements.

103

Bibliography

(1] J. Backus, “Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs,” Communications of the ACM.
vol. 21, No. 8, Aug. 1978, pp. 613-641.

[2] R., Milner, “A Proposal for Standard ML,” Proc. of 1984 ACM Conference on
LISP and Functional Programming. 1984, pp. 184-197.

[3] J. McGraw, et al, SISAL: Streams and Iteration in a Single Assignment Language,
Language Reference Manual Version 1.2, 1985.

[4] S. S. Yau, X. Jia and D.-H. Bae, “PROOF: Parallel Object-Oriented Functional
Computation Model,” Journal of Parallel and Distributed Computing, Vol. 12,
No. 3, July, 1991, pp. 202-212.

[5] S. S. Yau, X. Jia, D-H. Bae, M. Chidambaram, and G. Oh, “An Object-Oriented
Approach to Software Development for Parallel Processing Systems,” Proc. 15th
Int’l Computer Software & Applications Conf. (COMPSAC 91), September 1991,

pp. 453-458.

[6] S. S. Yau, D.-H. Bae and M. Chidambaram, “A Framework for Software Devel-
opment for Distributed Parallel Computing Systems, ” Proc. Third Workshop on
Future Trends of Distributed Computing Systems, April 1992, pp. 240-246.

* [7] S. S. Yau, D.-H. Bae, M. Chidambaram, G. Pour, V. R. Satish, W-K. Sung and
K. Yeom, Software Engineering For Effective Utilization of Parallel Processing
Computing Systems, Final Technical Report RL-TR-93-113, Rome Laboratory,
Air Force Material Command, Griffiss Air Force base, New York, June 1993.

[8] S. S. Yau, D.-H. Bae, P. K. Gupta, S.-I. Paek, T. J. Thigpen, J. Wang and M.
A. Wells, A Software Development Methodology for Parallel Processing Systems,
Final Technical Report RL-TR-95-190, Rome Laboratory, Air Force Material
Command, Griffiss Air Force base, New York, October, 1995.

[9] G. Booch, Object-Oriented Analysis and Design, Benjamin/Cummings, 1994.

[10] S. Shlaer, and S. J. Mellor, Object-Oriented Systems Analysis: Modeling the
World in Data, Prentice Hall, 1988.

[11) P. Coad and E. Yourdon, Object-Oriented Analysis, Yourdon Press, 1991.

*RL.-TR-93-113 is Distribution Limited to U.S. Government Agencies Only.
104

[12] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-
Oriented Modeling and Design, Prentice Hall, 1991.

[13] S. S. Yau, D.-H. Bae and J. Wang, “An Architecture-Independent Software De-
velopment Approach fro Parallel Processing System”, Proc. of the 19th Annual
Int’l Computer Software & Applications Conf. (COMPSAC 95), August, 1995,
pp. 370-375.

[14] S. S. Yau and J. Wang, “A Framework for an Integrated Tool Set for Object-
Oriented Software Development”, Proc. of the 20th Annual Int’l Computer Soft-
ware & Applications Conf. (COMPSAC 96), August, 1996, pp. 502-507.

[15] K. S. Rubin and A. Goldberg, “Object Behavior Analysis,” Communications of
the ACM, September 1992, Vol. 35, No. 9, pp. 48-62.

[16] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

[17] D. E. Eager J. Zahorjan and E. D. Lazowska, “Speedup Versus Efficiency in
Parallel Systems,” IEEE Trans. on Computers, Vol. 38, No. 3, 1989, pp. 408-
423.

[18] H. S. Stone, “Multiprocessor Scheduling with the Aid of Network Flow Algo-
rithms,” IEEE Trans. on Software Engineering, Vol. SE-3, No. 1, 1977, pp. 85—
93.

[19] C. C. Shen and W. T. Tsai, “ A Graph Matching Approach to Optimal Task As-
signment in Distributed Computing Systems Using a Minimax Criterion,” IEEE
Trans. on Computers, Vol. 34, No. 3, 1985, pp. 197-203.

[20] W. W. Chu, L. J. Holloway, M.-T. Lan, and K. Efe, “Task Allocation in Dis-
tributed Data Processing,” IEEE Computer, Vol. 13, No. 11, 1980, pp. 57-69.

[21] O. I. El-Dessouki and W. H. Huan, “Distributed Enumeration on Network Com-
puters,” IEEE Trans. on Computers, Vol. C-29, No. 9, 1980, pp. 818-825.

[22] K. Efe, “Heuristic Models of Task Assignment Scheduling in Distributed Sys-
tems,” IEEE Computer, Vol. 15, No. 6, 1982, pp. 50-562.

[23] S. S. Yau and I. Wiharja, “An Approach to Module Distribution for the Design of
Embedded Distributed Software Systems,” Information Sciences, Vol. 56, 1991,

pp. 1-22.

[24] S. S. Yau, D.-H. Bae, and Gilda Pour, “A Partitioning Approach for Object-
Oriented Software Development for Parallel Processing Systems,” Proc. 16th An-
nual Int’l Computer Software & Applications Conf. (COMPSAC 92), October
1992, pp. 251-256.

[25] S. S. Yau and V. R. Satish, “A Task Allocation Algorithm for Distributed Com-
puting Systems,” Proc. 17th Annual Int’l Computer Software & Applications
Conf. (COMPSAC 93), November 1992, pp. 336-342. :

105

[26] C. N. Nikolaou and A. Ghafoor, “On the Assignment Problem of Arbitrary Pro-
cess Systems to Heterogeneous Distributed Computer Systems,” IEEE Trans. on
Computers, Vol. 41, No. 3, March 1992, pp. 257-273.

[27] D. Fernandez-Baca, “Allocating Modules to Processors in a Distributed Systems,”
IEEE Trans. on Software Engineering, Vol. 15, No. 11, November 1989, pp. 1427~

1436

[28] S. M. Shatz, J-P Wang and M. Goto, “Task Allocation for Maximizing Reliability
of Distributed Computer Systems,” IEEE Trans. on Computers, Vol. 41, No. 9,
September 1992, pp. 1156-1168.

[29] S. S.Yau, D.-H.Bae and K. Yeom, “An Approach to Object-Oriented Require-
ments Verification in Software Development for Distributed Computing Sys-
tems”, Proc. 18th Int’l Computer Software & Applicattions Conf.(COMPSAC
94), November 1994, pp. 96-102.

[30] L. B. Protsko, P. G. Sorenson, J.-P. Tremblay, and D. A. Schaefer, “Towards the
Automatic Generation of Software Diagrams,” IEEE Trans. on Software Engi-

neering, Vol. 17, No. 1, January 1991, pp. 10-21.

[31] C. Batini, E. Nardelli, and R. Tamassia, “A Layout Algorithm for Data Flow
Diagrams,” IEEE Trans. on Software Engineering, Vol. SE-12, No. 4, April 1986,

pp. 538-546.

[32] E. R. Gansner, S. C. North, and K. P. Vo, “DAG - A Program that Draws
Directed Graphs,” Software—Practice and Ezperience, Vol. 18, No. 11, November
1988, pp. 1047-1062.

[33] S. S. Yau, K. Yeom, B. Gao, L. Li and D-H. Bae, “An Object-Oriented Software

Development Framework for Autonomous Decentralized Systems,” Proc. Sec-
ond Int’l Symposium on Autonomous Decentralized Systems (ISADS 95), 1995,

pp- 405-411.

[34] G. A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information,” Psychological Reviews, Vol. 63, March
1965, pp. 81-97.

[35] J. J. Dongarra and T. Dunigan, “Message-Passing Performance of Various Com-

puters”, Available electronically on the PVM home page, the URL is http:
//www.netlib.org/utk/papers/commperf.ps, August 1995, page 14.

[36] E. Yourdon, “Object-Oriented System Design”, Yourdon Press, 1994.
[37] nCUBE Inc., nCUBE 2 Programmer’s Manual, 1992.

[38] A. Geist, Adam Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. SUnderam,
PVM: Parallel Virtual Machine A users’ Guide and Tutorial for Networked Par-
allel Computing, The MIT Press, 1994.

[39] W. Caelli, D. Longley and M. Shain, “Information Security Handbook”, Stockton
Press, 1991.

106

[40] R. Rivest, A. Shamir and L. Adelman, “A method for obtaining digital signatures
and public-key cryptosystems”, Communications of the ACM, Vol. 21, No. 2, Feb.
1978, pp. 120-128. '

#U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61157

107

